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Abstract

One of the promising opportunities offered by AI to support the decarbonization of electricity grids
is to align demand with low-carbon supply. We evaluated the effects of one of the world’s largest AI man-
aged EV charging tariffs (a retail electricity pricing plan) using a large-scale natural field experiment.
The tariff dynamically controlled vehicle charging to follow real-time wholesale electricity prices and
coordinate and optimize charging for the grid and the consumer through AI. We randomized financial
incentives to encourage enrollment onto the tariff. Over more than a year, we found that the tariff led to
a 42% reduction in household electricity demand during peak hours, with 100% of this demand shifted
to low-cost, low-emission off-peak periods. The tariff generated substantial consumer savings, while
demonstrating potential to lower producer costs, energy system costs, and carbon emissions through
significant load shifting. Overrides of the AI algorithm were low, suggesting that this tariff is likely
more efficient than a real-time-pricing tariff without AI. Our findings highlight the potential for scal-
able AI managed charging and its substantial welfare gains for the electricity system and society. We
also show that experimental estimates differed meaningfully from those obtained via non-randomized
difference-in-differences analysis, due to differences in the samples in the two evaluation strategies, al-
though we can reconcile the estimates with observables.
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1 Introduction

Artificial intelligence (AI) presents both significant threats and promising opportu-

nities for the future of the power grid (International Energy Agency, 2025a). A grow-

ing body of work highlights the increasing electricity demand, and resulting grid strain,

driven by AI itself, particularly through the rapid expansion of data centers (De Vries,

2023; Aljbour et al., 2024; Bogmans et al., 2025; Chen, 2025; Pilz et al., 2025). This

concern dominates the current public and policy discourse (Erdenesanaa, 2023; Kolbert,

2024). Yet AI also offers tools to improve the efficiency and flexibility of energy systems.

In particular, it could be used to forecast, manage, coordinate, personalize, and optimize

energy demand in the face of rising loads and variable renewable supply (Schweppe et al.,

1981; Antonopoulos et al., 2020; Biswas et al., 2024; Boopathy et al., 2024; Sandalow et al.,

2024).

AI has the potential to optimize energy demand management for both residential and

industrial customers. In theory, the most efficient approach is real-time pricing (RTP),

which directly exposes consumers to the marginal cost of electricity (Nicolson et al., 2018;

Borenstein, 2005b; Hinchberger et al., 2024). However, a significant body of evidence sug-

gests that consumers are reluctant to engage with day-ahead or real-time prices, due to

the cognitive burden and effort required to optimize their usage, along with the price

uncertainty they must constantly monitor (Harding and Sexton, 2017; Fabra et al., 2021).

In this context, AI managed tariffs offer a potential compromise, enabling real-time re-

sponsiveness at the consumer level while still allowing suppliers to engage in risk man-

agement and hedging strategies.1 Furthermore, AI enables suppliers or aggregators to

optimize on behalf of millions of customers’ devices, helping to smooth out fluctuations

in demand and maintain stability in wholesale prices.

Electric vehicles (EVs) are a compelling test case for these opportunities. As mobile,

flexible loads with storage capacity, EVs can draw and inject power across the grid, poten-

tially helping to smooth fluctuations from variable renewables and shift load across time

and space. Realizing this potential, however, poses complex challenges: how to schedule

charging to minimize costs without risking range anxiety, how to coordinate large num-

bers of vehicles to avoid local grid congestion, and how to adapt in real time to changing

current and future electricity prices and user behavior. These are exactly the kinds of

1The idea traces to MIT’s late-1970s work on Homeostatic (Utility) Control; see Schweppe et al. (1980) for the initial
formulation and Schweppe et al. (1981) for the residential “utility–customer marketplace,” in which a home controller
manages loads against time-varying (spot) prices subject to consumer preferences.
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high-dimensional, dynamic problems where AI excels. As a result, EVs, and the systems

designed to manage them, have become central to the computer science and engineer-

ing literatures exploring how AI can make energy systems more adaptive, resilient, and

efficient (Rigas et al., 2014; Kaack et al., 2022; Yaghoubi et al., 2024).

The keen interest in managing EV charging through AI is because EVs will likely be-

come one the largest users of electricity in the future. Global sales of EVs have increased

year-on-year over the past decade (50-fold increase), comprising more than 20% of new

cars in 2024 (International Energy Agency, 2025b); indeed, by 2030, EVs are expected to

account for 15% of total global demand growth, a contribution several times larger than

that of data centers (Agency, 2024). With falling battery costs and mandates in many

markets to phase out internal combustion engine (ICE) vehicles, the number of EVs on

the road is set to rise in the coming decade.2 However, if left unmanaged, this new load

could strain grid infrastructure, particularly during peak periods (Li and Jenn, 2024; ?;

Bernard et al., 2025), threatening grid reliability, raising system costs, and exposing con-

sumers to higher electricity prices, especially in areas with congestion or high marginal

generation costs. Unmanaged charging also misses the opportunity for consumers to ben-

efit from off-peak or low-emissions periods, which are likely to become more pronounced

as renewable penetration increases.

Despite increasing policy and commercial interest in AI managed charging (Hilder-

meier et al., 2022), there remains limited causal evidence on how consumers actually en-

gage with AI or AI-based tariffs (Black et al., 2024). While utilities and regulators across

the globe have produced forecasts of how managed charging might shape electricity de-

mand and prices (Lowell et al., 2017; Bradley et al., 2018; Seamonds and Lowell, 2018;

NYSERDA, 2021; Anwar et al., 2022; Jones et al., 2022), these projections often lack a

credible counterfactual, limiting their empirical validity. In the United States alone, over

$100 million has been allocated across at least ten recent or ongoing managed EV charg-

ing pilots (SEPA, 2024), yet none constitutes a proper field experiment with a credible

counterfactual. Moreover, none deploy AI-based charging management at meaningful

scale, and all suffer from limited sample sizes, severely undermining statistical power

and the reliability of their conclusions. These shortcomings underscore the need for rig-

orous empirical experiments.

2The UK plans to end the sale of new cars powered solely by ICE by 2030, and hybrids and vans by 2035 (Department
of Transportation, 2025). The European Union has legislated to effectively ban new ICE cars by 2035 as part of its “Fit
for 55” climate package (European Commission, 2023). The US previously aimed for 50% of new vehicle sales to be
electric by 2030, but this executive order has since been revoked (The White House, 2025).
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Our paper addresses this gap by presenting what we believe is the only natural field

experiment to date on the adoption and impact of a managed EV charging tariff – and

notably, one driven by AI. In partnership with Octopus Energy, the UK’s largest electric-

ity supplier, we implemented a large-scale randomized encouragement design targeting

13,233 suspected EV owners across Great Britain.3 The intervention promoted the Intel-

ligent Octopus (IO) Go tariff, which combines time-of-use (ToU) pricing with AI managed

charging.4 The ToU component was designed as having an “off-peak” rate overnight ap-

proximately 50% lower than the standard rate, whereas all other times of the day, prices

were set at or slightly above the standard rate (see Figure A1a). If the AI decided to charge

the EV during the day, it would charge the customer the lower off-peak rate.

IO Go is now, to the best of our knowledge, the world’s largest managed EV charging

tariff, serving approximately 300,000 customers across the UK and expanding rapidly

in the US, Germany, France, and Italy.5 In our setting, the AI managed charging tariff
uses real-time wholesale prices as a key input into scheduling charging, without expos-

ing consumers to these granular prices. It combines linear programming with machine

learning models to minimize expected energy costs, reduce grid congestion, and support

grid balancing, all subject to customer-set constraints (a ”ready-by" deadline and target

state of charge). The AI tariff we studied represents a partial and centrally coordinated

implementation of RTP. It preserves key elements of allocative efficiency by shifting load

away from high-cost periods but bypasses price-based incentives at the individual level.6

The field experiment allowed us to estimate the causal effect of financial incentives on

3To determine whether a customer might own an EV, we used data on household electricity consumption to look
for evidence of power draws consistent with ownership of a wall charger. This was done in conjunction with domain
experts at Octopus Energy.

4The AI management is carried out by Kraken Technologies, a technology company owned by Octopus Energy
Group. In practice, the system ingests real-time data from EVs, household loads, weather forecasts, wholesale prices,
grid constraints, and user preferences. It then applies machine learning–based forecasting and classical linear pro-
gramming to determine optimal charging schedules across batches of devices, updating in real time and adjusting
when necessary to provide ancillary services such as system balancing. The literature variously refers to such arrange-
ments as “managed charging,” “smart charging,” or “utility-controlled charging.” For example, Lagomarsino et al.
(2022) define smart charging as coordinated systems that optimize charging for grid balancing and/or user prefer-
ences, while Axsen et al. (2017) describe utility-controlled charging as timing decisions delegated to a third party to
reduce costs or support renewables (see also Kubli 2022; Bailey and Axsen 2015). By contrast, time-of-use tariffs are a
form of user-managed charging in which customers shift demand directly in response to prices (Sovacool et al., 2017;
Delmonte et al., 2020). Here we use “managed” and “smart” interchangeably to refer specifically to retailer-controlled
charging.

5Currently, the tariff manages roughly 2GW of power in Great Britain (Green, 2025).
6While one way to assess the efficiency of this AI managed charging tariff is by estimating its correlation with

wholesale prices (Hinchberger et al., 2024), this proves challenging in our case. The AI is performing a complex real-
time optimization to maximize overall welfare, not just in wholesale markets, but also in ancillary services, while
simultaneously optimizing consumer welfare. This includes aggregating and coordinating user preferences to ensure
EVs are charged when needed. Additionally, the sufficient statistics approach to evaluating tariff efficiency overlooks
total net benefits, particularly the role of tariff take-up and the own-price and cross-price elasticity (over time) of
those who take up the tariff. AI has the promise of making RTP tariffs palatable (i.e., reducing the need for consumer
attention and reducing high price uncertainty) in the future for consumers.
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adoption of the AI managed charging tariff, and to use this variation to instrument for

the impact of managed charging on electricity consumption. Treated trial participants

were emailed and randomly assigned to one of four groups: (1) email only; (2) £5/month;

(3) £50/month; or (4) £50/month conditional on not overriding the AI managed charg-

ing, with all payments lasting three months. A pure control group received no contact.

We examined two primary outcomes: tariff take-up and electricity use, with particular

focus on peak demand periods, over the 12 months following the encouragement, and we

follow our pre-analysis plan (unless otherwise stated).

In addition to the experimental analysis, we conducted a supplementary difference-

in-differences (DiD) analysis using observational data to estimate the impact of managed

charging on electricity consumption among customers who voluntarily adopted the tar-

iff outside of the trial. We compared electricity use before and after adoption for these

customers, relative to a control group of similar customers who had not yet adopted, ex-

ploiting variation in adoption timing. This approach provides complementary evidence

on the effects of managed charging in a real-world, self-selected yet scaled-up setting.

1.1 Primary findings

We report six main sets of findings.

First, we found that email-based encouragements increased take-up of the managed

charging tariff. Across all incentive groups, assignment to treatment led to higher en-

rollment in the IO Go tariff relative to the control group. While the absolute increases

in take-up were modest in absolute terms, even the email-only group, with no monetary

incentive, raised enrollment by 3.4 percentage points, while the two £50/month arms

nearly doubled that effect. Importantly, we suspect that these take-up rates represent a

lower bound, as enrollment was constrained by technical compatibility: trial participants

needed a supported charger or EV to join. Lacking data on compatibility, we cannot iden-

tify the true eligible population. Thus, the measured effects likely understate the poten-

tial impact in a fully compatible setting.7 We find a price elasticity of the take up of the

managed tariff to be -0.143.

Second, we observed strong retention and widespread acceptance of AI managed

charging among trial participants. Trial participants who enrolled in IO Go largely re-

7According to informal estimates shared by Octopus Energy staff via personal communication, 60–70% of EV own-
ers were likely compatible with IO Go in 2024, based on available EV and charger integrations.
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mained on the tariff, with post-incentive take-up rates statistically indistinguishable from

those during the first three months. Among adopters, we observe high adherence to the

AI managed charging schedule: over half never overrode the supplier charging schedule,

on any given day there is a 1% likelihood of overriding, and only 2.3% of total electric-

ity consumption occurred via overrides. These patterns suggest that, once adopted, AI

managed charging integrates smoothly into daily routines with minimal disruption, un-

derscoring its potential for long-term grid flexibility. Importantly, these override percent-

ages are far below the threshold where RTP would dominate an AI-ToU tariff, according

to a theoretical model we developed to quantify the conditions under which AI managed

charging (with overrides) has welfare dominance over RTP. This is even true when the AI

algorithm only controls 20% of the household’s energy demand (roughly the amount of

energy from EV charging in our sample). These empirical and theoretical findings sug-

gest that AI may be the best feasible option in the presence of attention constraints and

other real frictions.

Third, using treatment assignment as an instrument for tariff adoption, we estimated

that AI managed charging reduced peak-period electricity consumption by 42%, with the

entirety of that load shifted to overnight off-peak hours. There was no change in total

electricity use, indicating that the program induced temporal load shifting rather than

increased consumption. This shifting was similar across all of the randomized encour-

agement groups (email, low incentive, high incentive, and high incentive plus cost to

override).

Fourth, the AI appeared to enhance responsiveness to wholesale electricity prices be-

yond the effects of the peak to off-peak shifting. We examined consumption patterns of

trial participants who signed up to the AI tariff versus those who signed up to a similar

ToU pricing regime but with no AI management of charging. Comparing the two groups,

we found that participants who signed up to IO Go exhibited higher elasticity with re-

spect to wholesale electricity prices during peak evening and off-peak overnight hours,

whereas daytime responsiveness is similar across groups. While we cannot interpret these

differences causally due to non-random assignment, the results suggest that the AI man-

aged scheduling in IO Go helps shift consumption away from high system prices within

periods of the day, i.e., above and beyond between-period shifting that a static ToU tariff
is designed to achieve.

Fifth, DiD estimates were smaller than the experimental estimates. We believe this

difference was due to differing samples. While both the experimental and DiD approaches
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reveal similar directional patterns of load shifting, the experimental instrumental vari-

ables estimates indicated a 42% reduction in peak-period consumption, compared to just

8% in the DiD estimates. An important contributor to this gap is that many customers in

the DiD sample were already on time-of-use tariffs before adopting IO Go, leaving them

with less potential for further consumption change. After reweighting the DiD sample to

match the experimental group on prior tariff type, the estimated peak reduction rises to

22%: narrowing, but not eliminating, the gap. The remaining gap may be explained by

slightly different automation patterns in 2023 and 2024, with more diffuse consumption

reductions across the day in the DiD sample.

Sixth, we estimated the consumer, producer, grid, and social welfare benefits of this AI

managed charging tariff. The reallocation of electricity use to periods with substantially

lower rates reduced trial participant bills by £343 per year (an estimated 18% reduction in

cost per kWh). We estimated this increases to approximately £650 relative to the retailer’s

standard flat tariff.8 The electricity retailer saw similar savings in procurement costs

(procurement costs include the wholesale price of power and non-energy charges such as

transmission and distribution fees), implying near 100% pass-through of savings to trial

participants, at least based on the period of our analysis. Impacts on CO2e emissions were

large. The resource cost per tonne saving is extremely large (in the negative direction) for

consumers. We estimate a lower bound resource cost per tonne of around -£2,445, which

is an order of magnitude lower than the next-best technology (Gillingham and Stock,

2018; Gosnell et al., 2020; Hahn et al., 2024). This tariff and technology is a very cost-

effective way to reduce CO2e emissions.

1.2 Contribution to the existing literature

Our research contributes to the literature on tariff switching and dynamic pricing.

The closest empirical papers to ours in the tariff-switching literature are Fowlie et al.

(2021) and Ito et al. (2023), who both studied consumer choices of time-varying tar-

iffs. Both ran randomized experiments and studied adoption as well as consumption.

Ito et al. (2023) documented selection on price-elasticity and consumption profiles in a

framed field experiment and showed that providing consumers with take-up incentives

encouraged more switching, and the more elastic consumers were more likely to adopt

8The counterfactual for our £343 estimate is the average bill of the control group in the experimental period, which
includes many tariffs. The £650 figure uses our estimated consumption treatment effects from Figure 6,relative to the
bill under the standard flat tariff.
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time-varying pricing. Fowlie et al. (2021) compared the adoption rates and aggregate de-

mand response of ToU (and critical peak pricing) under opt-in and opt-out set-ups in a

natural field experiment. They found that demand response decreases over time among

always-takers and increases over time among complacents. However, both papers consid-

ered time-varying tariffs where rates are set ex-ante and therefore cannot address issues

related to spot price uncertainty (except via critical peak pricing), which is a key element

in the case of real-time pricing and/or AI managed tariffs that optimize around such

prices. In their set-ups, the only uncertainty consumers face relates to their preferences

and in particular how costly it is to change their consumption habits.9 These papers also

do not have an AI component.

In our setting, once consumers enroll, intra-day energy demand adjustments are fully

managed by AI. This suggests little selection on levels and slopes, since the behavioral

effort required from consumers is minimal, in contrast with Einav et al. (2013) and Ito

et al. (2023).10 These results raise broader welfare questions about the role of AI in man-

aging consumption of intertemporal goods with time-varying prices. Three related stud-

ies speak to automation in similar contexts. Blonz et al. (2025) examined the impact of

automated temperature set-points through a smart thermostat in an opt-in field experi-

ment with ToU pricing. While their system had no AI component (the automation was

deterministic, and did not update over time or use machine learning), they convincingly

demonstrate the benefits of the automation (raising temperature set-points in the sum-

mer during the peak price part of the day) and low override rates. Our findings of "set

and forget" (via automation) having similarly low overrides support their results. Bailey

et al. (2024) and Khanna et al. (2024) studied utility-managed demand response in opt-in

experiments, again without AI. We extend these important contributions by leveraging a

natural field experiment with AI deployed in a scaled-up market product.

Beyond these related studies, a broader literature on tariff switching and design doc-

uments significant inertia and inattention in energy markets, often attributed to high

switching costs (Hortaçsu et al., 2017; Byrne et al., 2022; Gravert, 2024; Garcia-Osipenko

et al., 2025). Our study is the first, to the best of our knowledge, to estimate switching

costs in a natural field experiment by randomizing financial incentives for tariff switch-

ing. We found a price elasticity of switching to an AI tariff to be -0.143, suggesting the

9This within-day variation and the associated welfare benefits of such change is also related to the work of Hahn
et al. (2023).

10Other costs affecting selection on tariff levels may remain, such as lack of control (Bailey and Axsen, 2015) or
privacy concerns (Moser, 2017).
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importance of switching costs.11

We also leveraged our empirical findings to create a theoretical model building on the

conceptual foundations of Joskow and Tirole (2006b), who studied optimal tariff menus

in competitive retail electricity markets. In their two-stage framework, consumers first

choose among contracts and then respond to real-time wholesale prices under the terms

of their chosen tariff. They showed that with sufficiently low transaction and metering

costs, high-granularity tariffs such as RTP dominate coarser options like flat or ToU pric-

ing. We retained the two-stage structure but add an AI managed option in which price

response is automated. Critically, we also allowed for partial non-compliance in the form

of overrides, which generate deviations from the optimal automated schedule. This ex-

tension reveals conditions, captured by a closed-form “crossover override rate” thresh-

old, under which automation can outperform RTP even when RTP’s transaction costs are

small, and conversely when frequent overrides erode the automation advantage.

We also connect to Borenstein (2005b), who formally demonstrated that RTP can im-

prove both allocative and investment efficiency relative to static retail tariffs. Borenstein’s

model, however, assumes full compliance under RTP and abstracts from behavioral fric-

tions such as attention costs, risk aversion, or non-compliance with automated control.

Our contribution is to embed these frictions explicitly in the welfare ranking exercise and

to operationalize compliance as a stochastic decision margin with a measurable thresh-

old. By doing so, we bridge the gap between the “full compliance” efficiency case for RTP

and the more friction-aware tariff choice models in the retail competition literature.12 In-

deed, many RTP tariffs have struggled with low adoption and limited demand response,

largely due to rational and/or irrational inattention and aversion to price uncertainty.13

Our experimental design allows us to measure override rates, estimate the welfare

gap absent overrides, and compare the realized override frequency to the theoretically

derived crossover rate. In this way, the model delivers not just comparative statics but

concrete experimental benchmarks for when automation should, and should not, replace

direct price exposure. The scalability, efficacy, and consumer acceptance of an AI hybrid

tariff like this suggest they may become the dominant model for EV (and possibly heat

pump) households, which will be the modal household in the next ten to fifteen years.

11Prior work in health, telecommunications, and energy has typically estimated switching elasticities using structural
models or by experimentally varying the information provided about costs and benefits across options.

12For quantitative simulations of RTP’s welfare gains, see Holland and Mansur (2006) for PJM, Poletti and Wright
(2020) for New Zealand, and Imelda et al. (2024) for renewable-heavy systems, such as the case of Oahu, Hawaii.

13See Borenstein (2007); Allcott (2011); Joskow and Wolfram (2012); Wolak (2013); Fabra et al. (2021); Leslie et al.
(2021); Cahana et al. (2022); Pébereau and Remmy (2023); Enrich et al. (2024) for evidence.
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Our paper also contributes to the growing literature on EV charging, particularly work

that explores how consumers respond to incentives to shift charging behavior (Burkhardt

et al., 2023; Garg et al., 2024; La Nauze et al., 2024; Bailey, Brown, Shaffer and Wolak,

2025; Bernard et al., 2025). While these studies provided important insights, they primar-

ily examine manual charging decisions and typically involved selected or opt-in samples.

A close and innovative study by Bailey, Brown, Myers, Shaffer and Wolak (2025) exam-

ined managed charging versus ToU in a small framed field experiment in Canada, but the

managed charging component had no AI built in and the study lacked sufficient power

to demonstrate the impact of managed charging for energy demand against the null.14

In contrast, our study is the first to evaluate a large-scale, AI managed charging product

embedded within a real market tariff, with no selection into the experimental sample.

We examined the world’s largest managed EV charging program, implemented through a

natural field experiment in partnership with a major electricity supplier, which allowed

us to capture consumer demand in a real-world setting, free from selection biases into

the sample. Moreover, our focus on AI-driven automation offers novel insights into how

intelligent systems, not just prices, can coordinate household electricity demand at scale.

There is a large body of work suggesting the importance of EV charging infrastructure

and policies on long-term EV adoption (Zhou and Li, 2018; Archsmith et al., 2022; Powell

et al., 2022; Rapson and Muehlegger, 2023b,a; Heid et al., 2024; Turk et al., 2024; Asensio

et al., 2025; Dorsey et al., 2025; Gillingham et al., 2025). Our research contributes to this

literature by causally estimating how an AI managed charging tariff can reduce the costs

of adopting an EV, increase consumer surplus, optimize charging in line with grid condi-

tions so as to reduce costs building and operating electricity systems. These components

are important for any welfare calculations of any EV policy. In our welfare framework,

there are large cost reductions, but uncertainty on whether such reductions are captured

all by firms and consumers or whether the government will also spend less on the grid in

the future (which would generate a Pareto improvement if so).

We also connect to a literature, largely outside of economics, on the grid-level bene-

fits of flexible EV charging (Heuberger et al., 2020; Crozier et al., 2020; Li and Jenn, 2024;

Powell et al., 2022; Franken et al., 2025). These studies typically use power system models

to determine the least-cost mix of generation, storage, and transmission, and then assess

how EV adoption and charging shape system costs and reliability. Our work comple-

ments this modeling approach by providing empirical evidence on real-world charging

14Another close study is by Burkhardt et al. (2023), who demonstrated a successful proof-of-concept pilot of night-
time off-peak prices in shaping EV charging demand, without any management from the utility.
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behavior and the flexibility of EV demand. We show that participants largely adhere to

AI-scheduled charging, and that the consumption impacts of adoption and adherence

are similar across subgroups and between early and late adopters. This strengthens con-

fidence that the flexibility assumed in system models is achievable in practice, and that it

may persist as EV adoption broadens to later adopters.

Finally, we contribute to the research on the economics of AI by demonstrating how AI

can causally affect environmental outcomes.15 While prior natural and field experiments

have examined AI’s impact on labor productivity (Agarwal et al., 2023; Cui et al., 2024;

Björkegren et al., 2025; Brynjolfsson et al., 2025), we believe that our study is the first to

provide causal evidence indicative of reduced energy consumption under AI-driven op-

timization, where we do not observe differences across broad household types.. Although

scholars have highlighted the challenges of identifying AI’s effects in labor markets (Bryn-

jolfsson et al., 2019; Frank et al., 2019), these identification barriers are less pronounced

in energy and environmental contexts. AI often lowers the cost of effort, making it dif-

ficult to disentangle AI from price effects and isolate its unique impact. This matters

because reducing effort, through tools, automation, or process improvements, has long

influenced labor markets, yet existing studies rarely separate this effect from AI itself. In

our setting, the reduction in effort occurs on the retailer side in responding to wholesale

prices or ancillary markets, while consumer prices remain unaffected by the AI’s opti-

mization.

The paper is structured as follows: Section 2 provides an overview of the natural field

experiment, including the sampling, the intervention (i.e., the AI-EV tariff), the random-

ized encouragement, the randomization procedure, and available data. Section 3 devel-

ops the demand estimates from the field experiment. Section 4 complements Section 3

with a difference-in-difference analysis of the intervention, and attempts to reconcile with

the experimental estimates. Section 5 presents the welfare estimates of the intervention

and the randomized encouragement, and finally, Section 7 concludes.

2 Experimental design

This section describes the design and implementation of our field experiment. We be-

gin by detailing the eligibility criteria and sampling strategy used to construct the study

15This complements the approach that AI data centers could impact on energy flexibility and thus emissions (Knittel
et al., 2025).
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population. We then describe the AI managed charging tariff and its underlying automa-

tion, before outlining the randomized encouragement design used to induce uptake. We

conclude by summarizing our randomization procedure and the data used in the analysis.

2.1 Eligibility into the field experiment

We implemented the field trial in partnership with Octopus Energy, the United King-

dom’s largest electricity supplier. We defined the target population as residential cus-

tomers satisfying three criteria: (i) they were likely to own an EV; (ii) as of December 2023,

they had only ever subscribed to conventional flat-rate or variable-rate import tariffs –

that is, they had no prior engagement with time-of-use pricing or AI managed charging;

and (iii) they resided in houses (rather than apartments/flats or mobile homes), which

are likely suitable for at-home charging.

As we lacked administrative records on EV ownership, we inferred it using household

electricity consumption data from smart meters. Following internal technical guidance,

we defined ”suspected charging events” as four to twelve consecutive half-hourly inter-

vals with half-hourly total usage exceeding 3.5 kWh, consistent with Level 2 (7 kW) home

charging. We averaged the number of such events per week over a ten-week window in

summer 2023 (July–August), and classified as “suspected EV owners” those customers

with between 0.5 and 4 events per week (these thresholds were chosen in consultation

with Octopus Energy colleagues with subject matter expertise on typical EV charging

frequency among customers).

This sampling strategy yielded 13,233 trial participants who are more plausibly rep-

resentative of mainstream British EV owners. Unlike early adopters already enrolled

in smart tariffs, these trial participants are likely to be more price-sensitive, less moti-

vated by environmental ideology, and more similar to the broader population of potential

adopters of managed charging technologies.

2.2 The intervention: Intelligent Octopus (IO) Go

IO Go is a residential electricity tariff that combines time-of-use pricing with AI man-

agement of automated EV charging. Through the Octopus app, customers set a target

battery level and departure time; Octopus then schedules charging to meet those targets

(Figure 1a). In exchange, IO Go provides a favorable electricity rate of £0.07/kWh during
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a fixed six-hour off-peak window (23:30–05:30).16 This rate applies not only to EV charg-

ing but to all household consumption during that period. Charging that occurs outside

the scheduled off-peak window is still billed at the off-peak rate if it is initiated by the

AI automation. Customers retain the ability to manually override this schedule via a mo-

bile app (“bump charging”, shown in Figure 1b). When customers charge outside of the

schedule, it is billed at the higher rate. The applicable tariff schedule for 2024 is shown

in Figure 2.

Figure 1: IO Go Charging Controls via Mobile App

(a) Daily Charging
Schedule

(b) Temporary
Override

(c) Sustained
Override

The IO Go tariff uses AI to generate charging schedules based on wholesale electricity

prices, adapted to the market structure of each region where it is offered. In Great Britain,

where wholesale prices are national, schedules are optimized using a blend of day-ahead

and intraday wholesale prices, with intraday data available on a rolling-hourly basis. In

most European markets, the optimization is updated daily based on day-ahead wholesale
16Octopus Energy’s standard tariff Flexible Octopus charges a flat rate of approximately £0.22–£0.27 per kWh

throughout the day, depending on region, as shown in Figure 2.
12

https://octopus.energy/tariffs/


Figure 2: Tariff Rates
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Notes: This figure shows the tariff rates for Intelligent Octopus Go customers during the off-peak overnight period
(23:30–05:30, dark purple) and the peak daytime period (05:30–23:30, light purple). For comparison, we also include
the Flexible Octopus tariff from Octopus Energy, which maintains a flat rate throughout the day.

prices, while in the United States, the algorithm relies on forecasts of real-time prices. The

optimization window can extend up to 24 hours into the future, accommodating user-

specific “ready-by” times. These may require intraday charging plans – such as afternoon

readiness – or more commonly, overnight charging plans, particularly in Great Britain.

Following the baseline price-driven optimization, the system supports a secondary ad-

justment layer for participation in ancillary service markets and real-time grid-balancing

operations. In this mode, the EV portfolio is managed as a coordinated fleet with portfolio-

level volume targets, allowing for dynamic adjustment of charging schedules in response

to market trades or direct requests from system operators. This enables dual operational

modes: price-only optimization, in which vehicles charge during the lowest-cost peri-

ods (often aligning with high renewable output), and price-plus-volume optimization,

in which charging is redistributed to meet specific aggregate energy delivery constraints

while maintaining cost efficiency.

The optimization engine integrates two complementary computational approaches:

classical linear programming and machine learning–based forecasting. The linear pro-

gramming component solves for the cost-minimizing charging schedule subject to tech-

nical and operational constraints, such as maximum charging rates, user readiness re-

quirements, and fleet-wide volume limits. The machine learning component enhances

this process by providing predictive inputs to the optimization, including forecasts of EV
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availability (based on historical connection patterns), expected charging requirements

for vehicles not yet connected, and local load predictions, including home consumption

and on-site solar generation when applicable. These forecasts are updated in real time,

enabling the optimization to adapt to changing conditions.

From an efficiency point of view, a key advantage of IO Go’s automation is to mitigate

inefficiencies due to human error, bounded rationality, or rational inattention. In envi-

ronments where consumers are either rationally inattentive or lack the sophistication to

respond optimally to high-frequency price signals, automated optimization under IO Go

may yield strictly higher social welfare (from a net benefits or resource cost-effectiveness

point of view) than consumer-managed RTP (see Appendix A.7 for some predictions).

2.3 The randomized encouragement design

The trial participants in our sample were randomized into one of five arms:

1. Control group (n = 2,205): no outreach

2. Email (n = 7,720): encouragement email with no financial incentives for signing up

to IO Go

3. Email + £5/month incentive to sign up (n = 1,101): encouragement email with offer

of £5/month for three months for signing up to IO Go

4. Email + £50/month incentive to sign up (n = 1,102): encouragement email with

offer of £50/month for three months for signing up to IO Go

5. Email + £50/month incentive to sign up (n = 1,105), no bump charging (overriding):

encouragement email with offer of £50/month for three months for signing up to IO

Go. Additionally, they pay £2 of their incentive for each day they “bump charged" –

that is, overrode the AI control at least once per day. This was designed to probe trial

participants’ willingness to tolerate even less control over their charging schedule.

Each treatment arm received a single encouragement email from Octopus Energy’s

marketing team, reproduced in Appendix A.4.1. These messages included a prominent

call to action, a theoretical £700/year savings estimate (based on historical usage mod-

eling), and tariff-specific details, with minor variations in content to reflect the assigned
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incentive level. The “no bump” group was explicitly informed that their monthly pay-

ment would be reduced by £2 for each day they initiated a manual override of managed

charging.

Encouragement emails were dispatched in two waves: the first on February 15, 2024,

and the second on March 20, 2024. Incentive payments were credited to trial participants’

Octopus Energy account balances, accruing daily over a 90-day period conditional on

maintaining an active IO Go contract. In effect, this structure functioned as a discount on

the customer’s electricity bill, lowering the effective cost of household energy use during

the incentive window.

Note that it was required by our implementing partner, Octopus Energy, that our en-

couragement emails for IO Go inform customers that Octopus Energy offers other tariffs

that may have better met their needs. Importantly, IO Go is not compatible with all

chargers or vehicles; for these circumstances, Octopus Energy offers an alternative EV

tariff: Octopus Go, a time-of-use EV tariff offering a fixed off-peak rate for electricity. The

major differences from Intelligent Octopus Go are: (1) it offers one fewer hour of cheap

overnight rate (00:30-5:30, instead of IO Go which is 23:30-5:30) (2) its off-peak rate is

higher than IO Go’s (£0.085/kWh, as compared to £0.07/kWh for IO Go; for exact rates,

see Figure A1b), and (3) Octopus Go does not incorporate managed charging and thus has

no bonus off-peak windows. This creates the possibility that encouragements influenced

uptake of tariffs other than IO Go, posing a potential channel for exclusion restriction

violations. We test and discuss this in Section 3.1.

2.3.1 Hypotheses

The design of the field experiment allowed us to test two main pre-specified hypotheses:

1. Increasing the incentive payment for adopting IO Go will increase actual adoption.

2. Adoption of IO Go tariff will shift electricity consumption from peak (16:00–20:00)

to off-peak (23:30-5:30) hours.

These two hypotheses are not from the same family and thus we did not correct for mul-

tiple hypothesis testing across them. However, we will go into some of the testable pre-

dictions from the design below.
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2.4 Tying the Experiment to a Theoretical Framework

From a welfare analysis perspective, we expect the IO Go tariff to generate distinct

welfare outcomes relative to RTP, depending on the nature of optimization opportunities

and consumer behavior. IO Go can outperform RTP when it leverages price signals from

multiple markets, such as ancillary markets that are typically excluded from the RTP

signal.17

We consider EV charging under four tariff regimes: flat (the baseline counterfactual

our sample is initially on), time-of-use (ToU) with no AI, real-time pricing without AI

(RTP), and the AI tariff “IO Go” with possible household overrides (“bump charging”).

Households require a certain amount of energy by a deadline, have specific plug-in hours,

and face inconvenience costs when charging at less-preferred times.

The retailer’s total cost depends on total load and wholesale prices, net of ancil-

lary service benefits. Automated IO Go schedules charging centrally to minimize these

costs, while RTP households schedule themselves but face attention costs and risk from bill

volatility. ToU households respond to fixed peak/off-peak price differences.

We present the full model and predictions in Appendix A.7, which builds upon Boren-

stein (2005a,b); Joskow and Tirole (2006a,b), but here in this section we provide the gen-

eral predictions. Automation under IO Go will have higher welfare than RTP with some

attention and bill variance costs. Under IO Go, households may override the schedule

when their immediate value from charging exceeds the benefit of deferring plus a hassle

cost. Overrides can raise user utility but may increase system costs if they shift charging

into expensive or high-emission hours. This will reduce the social welfare of the AI tariff
and reduce the gap between it and RTP.

The two key parameters to estimate how many overrides mean that IO Go has lower

welfare than RTP are: (i) ∆W0: baseline welfare advantage of IO Go over RTP without

overrides; and (ii) λB: per-override welfare loss bound. These allow us to estimate the

crossover override rate:

β̄⋆ =
∆W0

λB

which is the threshold above which IO Go with overrides yields lower welfare than RTP.

17In principle, RTP could incorporate such signals, but doing so would require a richer, possibly non-transparent,
price vector and greater computational and behavioral demands on the consumer. However, IO Go may yield lower
welfare than RTP in settings where intertemporal optimization across days offers higher gains compared to within-day
load shifting, or when consumers systematically fail to plug in their EVs at times that maximize procurement cost
savings, though there is little evidence from RTP papers that people switch over days, and no evidence from our data
that people fail to plug in their EV.
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In a stylized calibration with price elasticity of demand in RTP being -0.5, β̄⋆ ≈ 0.06 to 0.2

overrides per EV–day at moderate attention costs; both higher attention costs and lower

price elasticities under RTP raise this threshold. This assumes the amount of energy

demand controlled by the AI algorithm is the same as under RTP. That is not true in

practice, but we show that if EV demand is 20%, then β̄⋆ ≈ 0.012 to 0.042.

Our model builds on strands of the energy economics and operations literature that

model demand under dynamic electricity pricing. Threshold-style decision rules, in

which users act only when net private benefits exceed a frictional cost, appear in online

EV charging optimization under RTP (Yi et al., 2019), where a dissatisfaction penalty

plays a role similar to our hassle cost φi . Menu-based contract designs for EV charg-

ing (Ghosh and Aggarwal, 2017) and joint welfare-maximizing scheduling algorithms

(Huang et al., 2023) adopt multi-stage decision structures that parallel our two-stage ex-

tension, in which households first adopt a tariff and then choose whether to override

automation.

Our model also relates to the generalized Roy model framework of Ito et al. (2023),

who study voluntary take-up of dynamic pricing plans using marginal treatment effects

to characterize heterogeneity in welfare gains from adoption. In their setting, the key

policy-relevant object is the optimal adoption cutoff; in ours, it is the crossover override

rate at which an AI schedule ceases to dominate RTP in welfare. Both identify a thresh-

old along a behavioral margin, adoption or overrides, at which the welfare ranking of

competing regimes changes.18 Relative to this literature, our contribution is to embed

such a threshold in an AI model for EV charging, explicitly linking override behavior to

aggregate welfare outcomes and making sharp, testable predictions for our experimental

design. Based on our setting and with a generous price elasticity of demand in the RTP

set-up (-0.5), our simulations suggest that an override rate of less than 10% rate would

make the AI tariff dominant over an RTP.
18Joskow and Tirole (2006b) present a general model of retail electricity competition in which tariff menus are de-

signed to elicit efficient real-time demand response, subject to transaction and metering frictions. In their frame-
work, sufficiently low frictions imply that high-granularity pricing schemes such as RTP dominate coarser alternatives.
Borenstein (2005b) similarly show that RTP improves allocative and investment efficiency relative to flat or ToU rates
in competitive markets, assuming full compliance and ignoring behavioral frictions. Our model extends these frame-
works in two ways: (i) we introduce an AI managed regime (IO) that automates price response, removing household
attention costs but allowing partial non-compliance through overrides, and (ii) we model overrides as a distinct be-
havioral margin with its own welfare implications. This richer friction structure implies that IO Go can outperform
RTP even when RTP’s transaction costs are small, provided override rates are below a crossover threshold β̄⋆ , and
conversely that high override rates can reverse the ranking – an effect absent from the original Joskow & Tirole and
Borenstein formulations.
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2.5 Randomization

Random assignment was implemented using a block randomization procedure to im-

prove covariate balance across trial arms (Moore and Schnakenberg, 2023). Prior to as-

signment, trial participants were grouped into 1,109 blocks of twelve customers based

on Mahalanobis distance calculated over a set of pre-encouragement variables predictive

of EV ownership and electricity consumption. These included historical electricity us-

age, tenure as a customer with Octopus Energy, and past engagement with smart tariff
onboarding. Within each block, two trial participants were assigned to the pure con-

trol group, seven to the £0/month encouragement group, and one each to the £5/month,

£50/month, and £50/month (no bump) groups – reflecting both budget constraints and

the firm’s commercial interest in maximizing exposure to IO Go. Randomization was per-

formed separately within each of the United Kingdom’s 14 electricity distribution regions

to ensure geographic stratification. This procedure yielded excellent covariate balance

across trial arms (Table A1, and Figure A2).

2.6 Data

Our analysis drew on high-frequency administrative data from Octopus Energy, Great

Britain’s largest electricity supplier, with personal identifiers removed. We focused on

two primary outcomes for our two hypotheses: (1) take-up of the IO Go tariff, measured

as a binary indicator for whether a trial participant held an active IO Go contract dur-

ing week t; and (2) electricity demand, observed at half-hourly resolution and expressed

in kilowatt-hours (kWh). We aggregated consumption to the week × hour-of-day level.

Electricity demand includes both EV-related and non-EV household load; concretely, we

summed smart-meter readings (which measure consumption from all appliances, not just

the EV charger) across all meter point administration numbers linked to each trial par-

ticipant account. These outcomes are observed from January 1, 2024 through March 31,

2025.19

Figure 3 shows average hourly electricity consumption in the pre-encouragement pe-

riod (i.e., January 2024), showing an expected evening peak beginning around 16:30.

Baseline consumption for our trial participants is much higher than that of a random

19A meter point administration number (MPAN) is a unique ID for an electricity supply point (e.g, a house) in relation
to a specific area of the UK’s national electricity grid. Tariff-contracts and half-hourly measurements of electricity use
are tied to account identifiers via MPANs. A single account can have multiple MPANs with different tariff agreements
that are simultaneously active.
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sample of other customers. Notably, we also observe substantial overnight consumption,

consistent with EV charging behavior. We believe this is partly driven by plugging the EV

after work in the evening and the default scheduling behavior in common EV chargers,

which sometimes pre-sets charging to off-peak times.20 Our intervention thus tests the

additional impact of managed charging in a setting where at least some users are already

defaulted into off-peak charging schedules.

We focus our analysis on off-peak periods (23:30-05:30) and peak periods (16:30-

20:30), following our pre-registration. Off-peak periods correspond to IO Go’s hours of

cheap overnight rates. Peak hours capture the period of highest intensive domestic elec-

tricity consumption (Few et al., 2022). That said, it is worth noting that the definition

of “peak” and “off-peak” may change and themselves become more variable by day and

season in the coming years.

Figure 3: Pre-Trial (January 2024) Hourly Consumption
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Notes: This figure shows average hourly electricity consumption across the sample in January 2024, prior to the start
of the trial. Trial participants are grouped by (1) those who later spent more than 50% of the trial period on Intelligent
Octopus Go or Octopus Go (2) those who remained on other tariffs, and (3) a random 20,000 sample of other OE cus-
tomers. Shaded regions show the 95% confidence interval. Octopus Go is an alternative time-of-use EV tariff designed
for customers who either had hardware that was incompatible with IO Go or did not wish to enroll in automation.
Green shaded box indicates IO Go off-peak hours (23:30–05:30), when electricity is charged at £0.07/kWh; all other
hours are billed at the standard variable rate. Blue shaded box indicates typical system peak hours (16:30–20:30),
which are highlighted to show times of heightened grid stress.

For trial participants who adopted IO Go, we also collected customer settings and

20Since June 2022, the UK’s Electric Vehicles (Smart Charge Points) Regulations 2021 have required that all new private
EV chargers include a default charging mode set outside of peak hours (8–11am and 4–10pm), along with a randomized
delay function to reduce grid strain.
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high-frequency telemetry on charging behavior. The settings include: (1) the ready-by

time, defined as the user-specified time by which the vehicle should be fully or partially

charged; and (2) the desired state of charge by that time. The telemetry data include: (1)

plug-in and unplug timestamps; (2) charging start and charging end timestamps; and (3)

an indicator for whether the charge was automatically dispatched by Octopus or man-

ually overridden by the user. These data allowed us to reconstruct intended charging

preferences, actual charging behavior, and deviations from automated control.

We used additional administrative data at the daily level to estimate consumer and

supplier benefits. First, to measure benefits to consumers, we used administrative data

from Octopus Energy detailing each customer’s unit rate per kWh. Second, to estimate

benefits to the electricity supplier (in procurement cost savings), we used administrative

data on each customer’s wholesale energy costs, as well as non-energy costs, per settle-

ment period. Non-energy costs include Transmission Network Use of System (TNUoS)

and Distribution Use of System (DUoS) charges, capacity market payments, and policy

costs (such as charges supporting Contracts for Difference); some of these charges vary

by period of day (e.g., DUoS). This yields an imputed per-kWh cost that combines the

energy and non-energy costs of supplying electricity.

For an exploration of sub-group heterogeneity, we used area-level deprivation data

from the UK-wide composite Index of Multiple Deprivation (IMD), as constructed by

Parsons and mySociety (2021) using methods from Abel et al. (2016). This version har-

monizes the constituent country-specific IMDs to a common England-anchored scale, en-

abling deprivation comparisons across the UK’s statistical reporting areas.

To quantify CO2e impacts, we integrated data from WattTime, a U.S.-based nonprofit

that produces historical estimates of the Marginal Operating Emissions Rate, or the emis-

sions associated with the marginal change in load on the grid (WattTime, 2022). Watt-

Time data is available at five-minute intervals.

3 Experimental results

This section presents the main empirical findings from our field experiment. We be-

gin by documenting the impact of the encouragements on trial participant enrollment

in a managed EV-charging tariff. We then examine how these changes in enrollment

influenced electricity consumption patterns, using both reduced-form and instrumental
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variable approaches. Finally, we explore heterogeneity in treatment effects, user behavior

under the managed charging regime, and the added value of automation beyond conven-

tional time-of-use pricing. We followed our pre-analysis plan (PAP), but state where we

added or deviated away from it, why we did, and their implications for interpretation in

Appendix A.3.

3.1 Impact of encouragement on take-up of managed charging

We begin by estimating the effect of encouragement on trial participants’ likelihood

of adopting a managed EV-charging tariff. Specifically, we estimate the following linear

probability model for whether trial participant i is enrolled in the IO Go tariff in week t:

DIO
it = π0 +π1Zi +π2Pit +π3(Zi × Pit) +µb +µt + ϵiht (1)

Here, DIO
it is a binary indicator equal to one if trial participant i is on an IO Go contract

in week t. Zi is a set of four binary indicators capturing the encouragement assignment,

with the control group omitted as the reference category. Pit denotes whether participant

i is in the incentive period in week t, where the incentive period is the three months after

the start of the trial. We include fixed effects for randomization block µb and calendar

week µt. Standard errors are clustered at the level of participant and week.

We observe an increase in take-up across all treatment groups, as shown in Table A2.

During the 90-day incentive window, the £0/Month and £5/Month groups each increased

the probability of take-up by approximately 3.4 percentage points, while the £50/Month

and £50/Month (No Bump) groups nearly doubled that effect, reaching 5.9 and 5.7 per-

centage points, respectively. Take-up in the control group is also rising over time, but

remains consistently lower than that observed in any encouragement arm (Figure A3).

At the end of the three-month incentivization period, take-up in the control group stood

at 2.7%, compared to 7.0% and 6.8% in the £0/Month and £5/Month groups, respec-

tively. The higher incentives resulted in the greatest adoption, with the £50/Month and

£50/Month (No Bump) groups reaching 9.3% and 9.2%.21. We calculated a price elasticity

of 0.143 between the £0/Month and £50/Month groups using the arc elasticity formula,

which compares the change in take-up rates relative to the midpoint of both the take-up

and total incentive levels (£0 vs £150).

21Tariff contracts can change at the level of the day, and thus there could be some worry that take-up analysis at the
weekly level could be biased. We run a robustness check of take-up at the daily level in Table A3, and find extremely
similar results to Table A2
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Across most encouragement arms, post-incentive enrollment remained stable. We

formally test this in Table A2, interacting the encouragement indicators and the post-

incentive period indicator in Table A2. The persistent retention after the incentive period

suggests that the initial encouragements had durable effects even in the absence of con-

tinued subsidy payments. Only the £50/Month (No Bump) experienced a statistically

significant drop of 1.6 percentage points after incentives ended. These results can be fur-

ther visualized in Figure 4, which shows estimates of Equation (1), split by month since

treatment. Retention dropped only in the group facing restrictions on manual overrides,

suggesting that managed charging is more likely to succeed when framed as a convenient

default rather than a rigid mandate. Encouragements that showcase consumer benefits

and flexibility can foster lasting adoption.

Figure 4: Impact of Encouragements on Take-up of Managed Charging Tariff (IO Go)
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Notes: This figure plots the intention-to-treat effects of four email-based encouragements to adopt a AI managed charg-
ing tariff (Intelligent Octopus Go), split by month since receiving the email. The outcome is a binary indicator for
weekly use of the tariff. Each panel corresponds to a different encouragement group, varying in the level of offered
financial incentive. Shaded areas represent 90% (dark) and 95% (light) confidence intervals, with standard errors clus-
tered at the participant and week level. The dashed vertical line indicates the end of the 90-day incentive period.

Importantly, take-up is mechanically constrained by compatibility: trial participants

need either their charger or EV to be supported by IO Go in order to enroll. For those

who do not enroll and have an EV, we do not observe their vehicle or charger details,

and there is no comprehensive national data on EV and charger ownership to fill this

gap. Therefore, we are unable to estimate what proportion of trial participants actually
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have compatible equipment.22 While IO Go is compatible with some of the most popular

home chargers (notably Ohme, MyEnergi/Zappi, and Hypervolt) this still represents only

a subset of the overall charger market. Compatibility via direct vehicle integration covers

several major EV brands, including Tesla, BMW, and VW, but again excludes some others.

Thus, the measured take-up rate represents a conservative estimate, limited by the extent

to which trial participants’ vehicles or chargers were compatible with IO Go.2324

As IO Go is not yet compatible for all customers, Octopus Energy offers an alternative

EV tariff, Octopus Go, described in Section 2.3. As a result of our email-based encourage-

ments, we observed a nontrivial increase in take-up of Octopus Go; our speculation is that

this was driven by customers who owned devices incompatible with IO Go. Compared

to the effects on take-up of Intelligent Octopus Go, the impacts on Octopus Go adoption

were smaller – roughly 30% as large as those for the £0/Month and £5/Month groups,

and 8–11% as large as those for the £50/Month and £50/Month (No Bump) groups (Ta-

ble A5). The results suggest that, although uptake was concentrated among adopters of

the managed-charging product, the encouragements induced a more general shift toward

tariffs designed for EV needs more generally. This affects how we interpret the impacts

of IO Go on electricity consumption, which we will discuss more in Section 3.3.25

Additionally, we test for selection on levels—that is, whether adoption of IO Go can

be explained by observable baseline characteristics, and in particular whether structural

winners (those with higher expected bill savings) were more likely to enroll. We estimate

a logit regression of IO Go take-up on encouragement assignment, expected structural

winnings, and baseline covariates. We estimate four specifications that progressively in-

crease flexibility: (1) a baseline model including only the incentive and expected win-

nings; (2) an expanded model adding additional covariates; (3) a model allowing for in-

teractions among covariates; and (4) a final specification incorporating nonparametric

22In February 2024, we sent a survey to 305 trial participants who we had emailed as part of a pre-trial pilot (where
pilot trial participants are not in the sample of our main analyses). We received 68 responses. Among the 56 re-
spondents who expressed interest in signing up for IO Go, 17 indicated that they had not done so due to device
incompatibility. We also show in Figure A5 the completion rate for participants who started signing up for IO Go but
did not complete onboarding. 23%, did not complete onboarding, and this is balanced across encouragement groups–
these individuals are not included in our take-up rate. This does not represent the overall incompatibility rate for two
reasons. First, many customers likely check whether their device is compatible before starting sign-up, since Octopus
provides a compatibility survey on the sign-up page. Second, there may also be other reasons beyond compatibility for
not completing onboarding.

23See this link for compatibility with charge points. IO Go is also compatible with several major EV brands.
24To further contextualize these take-up rates, the email open rate was 78% across all treatment groups, with most

opens occurring on the day following delivery and no qualitative variation across treatments (Figure A4). Noncompli-
ance with the intended IO Go take-up can thus be a result of not receiving or opening the encouragement email.

25IO Go has another rival tariff, Agile Octopus, which is a variable-rate tariff with prices linked to the day-ahead
wholesale cost of electricity. Take-up of Agile was quite low in our sample, and we found no effect of our encouragement
design on take-up of Agile Octopus.
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controls for expected savings.

We find no evidence of selection on levels: the coefficient on expected winnings is

small and statistically insignificant across all specifications. The results, presented as

marginal effects at the means of the covariates in Table A6, suggest that customers with

greater expected financial savings were not systematically more likely to adopt. There is

some evidence of selection on socioeconomic status—households in the second and third

terciles of the Index of Multiple Deprivation are more likely to enroll than those in the

most deprived tercile. In addition, customers who were already on a time-of-use tariff
prior to the trial were more likely to take up IO Go.

The explanatory power of these models is extremely low: the squared correlation co-

efficients from the propensity-score estimates are near zero, and the estimated propen-

sity scores themselves occupy a narrow range. This limited variation implies that most

of the heterogeneity in IO Go take-up arises from unobserved factors rather than ob-

servable characteristics. Moreover, the propensity scores produced by the four models

are not highly correlated with one another, underscoring the instability of the selection

equations. As a result, we are unable to estimate marginal treatment effects to further

understand selection on slope and heterogeneous treatment effects.

3.2 Impact of encouragements on electricity consumption

We next assess whether encouragement-induced take-up translated into changes in

electricity consumption over the course of the day. Specifically, we estimated intention-

to-treat (ITT) effects of each encouragement arm on hourly electricity use (kWh) using

the following specification:

Yiht = α + βZi +γXih +ψb +ψt + εit (2)

where Yiht denotes mean electricity consumption for user i in hour h during week t, Zi is

a vector of binary indicators for each encouragement assignment, Xih is user i’s average

pre-encouragement January 2024 consumption during hour h26, and ψb and ψt are fixed

effects for block and week, respectively. Standard errors were clustered by user and by

week (Colin Cameron and Miller, 2015). To obtain hour-specific effects, we estimated

the model separately for each hour of the day. To analyze broader periods (i.e. peak

26This control variable was not specified in our pre-analysis plan, but we included it to enhance the precision of our
estimates.
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vs. off-peak), we grouped hours into the relevant period and ran the regression on those

aggregates.

Figure 5 presents ITT estimates by encouragement arm, split by hour-of-day. All

groups showed increased consumption during the overnight off-peak period (23:30–05:30)

and modest reductions during peak hours (16:30–20:30), consistent with the tariff’s in-

centive to shift usage. Patterns are broadly similar across arms, although the £0/Month

and £50/Month (No Bump) treatments exhibit the largest declines in peak consumption.

When pooling all treatments into a single encouragement indicator and estimating a

regression over all hours within the specified peak and off-peak windows, we find that

receiving any encouragement increased off-peak consumption by 2% (0.019 kWh) and

reduced peak consumption by 2% (–0.026 kWh), with no overall effect on total usage

(Table A4).

3.3 Impact of managed charging on electricity consumption

To obtain the causal impact of adoption of the managed charging tariff on electric-

ity consumption, we used an instrumental variables estimation. In the first stage, we

instrumented tariff adoption with random assignment to any of the four email-based en-

couragements:

Diht = π0 +π1Zi +γXih +µb +µt + ϵiht (3)

where Zi is a binary indicator for whether the user received any encouragement. Xih
denotes average baseline consumption for user i in hour h. The specification includes

fixed effects for randomization block (µb) and calendar week (µt).

As shown in Section 3.1, our encouragements increased adoption of both the managed-

charging tariff (IO Go) and the EV-oriented time-of-use alternative (Octopus Go). To pre-

serve the exclusion restriction, given that our instrument affects both products, we define

Dit as an indicator for take-up of either IO Go or Octopus Go.27

In the second stage, we regressed hourly electricity use on predicted tariff status:

Yiht = α + βD̂iht +γXih +ψb +ψt + εiht (4)

27This deviates from our pre-analysis plan, reflecting our uncertainty at the outset of the trial about whether we
would face this exclusion restriction violation.
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Figure 5: Impact of Encouragements on Hourly Electricity Consumption
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Notes: This figure shows intention-to-treat effects of four email-based encouragements on hourly electricity use (kWh),
using data from the 12 months after sending out the email (estimated using Equation (2), split by hour-of-day). The first
panel defines encouragement as a binary indicator for whether the user received any encouragement. Each subsequent
panel represents a separate encouragement arm with varying incentive levels. Lines depict 90% (dark) and 95% (light)
confidence intervals. Standard errors are clustered by participant and week. Green shaded box indicates IO Go off-peak
hours (23:30–05:30), when electricity is charged at £0.07/kWh; all other hours are billed at the standard variable rate.
Blue shaded box indicates typical system peak hours (16:30–20:30), which are highlighted to show times of heightened
grid stress. Our outcome measure is hourly consumption, with hours defined as starting on the half-hour to align with
IO Go’s pricing structure. Percentages represent treatment effects as a share of the control group trial participants who
are not on an EV tariff, for off-peak (23:30–05:30, green) and peak (16:30–20:30, blue) periods. Estimates come from
regressions pooling all hours in each window, as reported in Table A4 and defined in Equation (2).

where Yiht is the mean daily consumption for user i in hour h of week t (i.e., the mean

daily consumption at each hour, averaged across the week). Standard errors are clustered

at both the participant and week levels. We estimated this regression over the 12 months

after encouragement emails were sent out.

This approach is valid under standard instrumental variables (IV) assumptions: (i)

relevance — encouragement must increase adoption, which we confirm with strong first-

stage effects already shown in Table A2; (ii) independence — random assignment ensures

encouragement is uncorrelated with unobserved determinants of outcomes, which holds

given our block randomization strategy (Appendix A.4.2); (iii) exclusion — encourage-

ment should affect electricity use only through tariff adoption, which we preserve by

pooling IO Go and Octopus Go as the treatment; and (iv) monotonicity — no customers

should be less likely to adopt when encouraged, which is plausible given the nature of
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the intervention. Under these conditions, the IV estimates identify the Local Average

Treatment Effect (LATE): the causal effect of adoption for customers who take up a tariff
if they receive the encouragement.28

We found that adoption of EV tariff significantly shifted consumption from peak to

off-peak hours. When we estimate Equation (4) over all hours within the specified peak

and off-peak windows, our main specification shows that peak-period usage fell by 42%

(0.581 kWh average hourly reduction), while off-peak usage rose by 50% (0.481 kWh

average hourly increase). This is a substantial reallocation of demand rather than an

increase in overall consumption. Consistent with this interpretation, Table A9 reports no

change in total electricity use. This load shifting pattern is further illustrated in Figure 6,

which shows consumption estimates, split by hour-of-day.

Our preferred specification uses a single binary instrument for assignment to any of

the four encouragements. Combining the four encouragement groups into a single binary

instrument mitigates concerns raised in Mogstad et al. (2021), particularly the potential

for negative weights being assigned to individual instruments when multiple instruments

are used. To assess robustness, Figure 6 also shows (i) a specification that includes the

four encouragement indicators as separate instruments and (ii) 4 additional specifica-

tions that use each encouragement indicator as a stand-alone instrument. The estimated

effects are similar across specifications, indicating that our findings are not sensitive to

the instrument definition.29

As a comparison, the consumption profile of the baseline group – control households

who did not adopt an EV tariff – exhibits a pronounced peak beginning around 16:30,

consistent with typical residential demand patterns and uncoordinated EV charging be-

havior (see Figure 7). Using the estimated treatment effects from the main specification in

Figure 6, we overlay the causal impact of EV tariff adoption onto the baseline profile. This

constructed profile illustrates how the EV tariff shifts electricity demand away from the

evening peak and toward the designated overnight off-peak period. The resulting pattern

flattens the peak-hour hump and concentrates usage during hours when electricity is less

expensive and there is less grid stress, underscoring the potential of managed charging

to reshape intraday load without increasing total consumption.

28The LATE identifies the effect of IO Go for compliers, not the population average treatment effect. Our random-
ized encouragement generates exogenous variation in assignment, but treatment can only be estimated for those who
comply with encouragement. Compliance itself involves multiple stages—such as opening and reading the email—and
these decisions may correlate with unobserved characteristics.

29Note that this preferred specification deviates from our pre-analysis plan of using the encouragement arms as
four separate instruments. However, results from the pre-specified analysis, which includes all four encouragement
indicators in the regression, are presented in the second panel of Figure 6.
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Figure 6: Impact of EV Tariff on Electricity Consumption
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Notes: This figure reports IV estimates of the effect of adopting an EV tariff on electricity consumption (kWh), split
by hour-of-day. The instrument is an indicator for assignment to any email-based encouragement. Each panel reports
a different specification: (1) is our main specification (Equation (4)); (2) defines a separate instrument for each en-
couragement group; (3) restricts to just the £0/Month group and the control group; (4) restricts to just the £50/Month
group and the control group; (5) just the £50/Month (No Bump) group and the control group. All specifications con-
trol for baseline consumption, and fixed effects for randomization block and week. Lines depict 90% (dark) and 95%
(light) confidence intervals. Standard errors are clustered by participant and week. Green shaded box indicates IO
Go off-peak hours (23:30–05:30), when electricity is charged at £0.07/kWh; all other hours are billed at the standard
variable rate. Blue shaded box indicates typical system peak hours (16:30–20:30), which are highlighted to show times
of heightened grid stress. Our outcome measure is hourly consumption, with hours defined as starting on the half-hour
to align with IO Go’s pricing structure. Percentages represent average treatment effects as a share of the control group
trial participants who are not on an EV tariff, for off-peak (23:30–05:30, green) and peak (16:30–20:30, blue) periods.
Estimates come from regressions pooling all hours in each window, as reported Tables A7 and A8.

3.4 Heterogeneity

We explored heterogeneity in treatment effects across consumers by interacting the

encouragement treatment with two key variables: (1) the Index of Multiple Deprivation

(IMD) and (2) baseline electricity consumption. In these specifications, we treat inter-

action terms (e.g., EV tariff × baseline covariate) as endogenous and instrument them

with the corresponding interaction of the randomized encouragement and the covariate,

consistent with standard IV practice.

The IMD is a composite measure that captures multiple dimensions of deprivation
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Figure 7: Electricity Consumption With and Without EV Tariff Adoption
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Notes: This figure displays mean hourly electricity consumption (kWh) for trial participants in the control group who
were not enrolled in the EV tariff. The purple line (“Baseline”) plots their observed consumption. The black line (“With
EV Tariff”) adds the estimated hourly treatment effects of EV tariff adoption, recovered from the IV analysis displayed
in the first panel of Figure 6. The shaded area denotes the 95% confidence interval for the treatment effect estimates.

(e.g., crime, housing barriers, health) for small geographic areas, weighted to produce

an overall deprivation score. For this analysis, we constructed IMD terciles by linking

trial participants’ meter-point-level postcodes to area-level IMD ranks.30 Socioeconomic

status shapes Socioeconomic status shapes both the ability to adopt EVs and the potential

financial gains from managed charging. Households facing financial hardship could in

theory benefit most from cheaper charging, but structural barriers, such as lack of off-

street parking or neighborhood safety concerns, may prevent uptake. Understanding

these dynamics requires analyzing effects across the socioeconomic gradient.

For baseline electricity consumption, we computed the total kWh used per customer

by aggregating all available half-hourly smart meter readings per day over the period

from February 15, 2023, to August 31, 2023. Households with high baseline electricity

consumption may have greater flexibility to shift charging, since larger batteries or mul-

tiple EVs provide more scope to delay without running short of range. At the same time,

their greater and more time-sensitive energy needs can reduce flexibility, leaving less

room to adjust without disrupting routines. This dimension highlights whether man-

aged charging works chiefly for high-demand users or more broadly across households,

30We discretize the IMD into terciles to avoid very small cell sizes in the most deprived group.
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shaping expectations about scalability and future generalizability.

We do observe heterogeneity in take-up. Adoption of IO Go was higher in IMD ter-

ciles 2 and 3 (Figure A6A). Take-up also declined with baseline electricity use: house-

holds with higher pre-trial consumption were less likely to adopt, particularly under

the £50/Month (No Bump) condition (Figure A7A).This pattern suggests that higher-

consuming households may be more reluctant to accept restrictions on charging, perhaps

due to greater perceived disruption to their routines.

Turning to impacts on electricity consumption, we find limited evidence of heteroge-

neous impacts. Across both dimensions we consider, there is no evidence of differences

in off-peak effects. For peak hours, the largest reductions occur in the middle IMD tercile

(Figure A6b). However, these results should be interpreted with caution given the lim-

ited precision of subgroup estimates: only 9% of our sample resides in the most deprived

tercile, reflecting the strong association between EV ownership and higher socioeconomic

status (Figure A6c). The small sample size in this group restricts our ability to detect pre-

cise effects among more deprived households. By contrast, baseline electricity use shows

little role in shaping treatment impacts. Conditional on adoption, consumption effects

are broadly similar across all terciles of pre-trial consumption (Figure A7b).

3.5 Intelligent Octopus Go user behavior

For participants who adopted IO Go, we have telemetry data on their plug-in events

and charging sessions, allowing us to examine their behavior more closely. On average,

IO Go households consumed 1.02 kWh per hour, equivalent to 8,935 kWh per year. Of

this total, 22.6% is attributable to EV charging, or around 2,020 kWh annually. If all

charging occurred at home and the vehicle averages about 3–4 miles per kWh, this implies

roughly 6,000–8,000 miles driven per year. These figures are consistent with the average

annual car mileage in the UK (around 7,000 miles; Department for Transport, 2024),

suggesting that the mileage behavior in our sample is comparable to that of primary

household vehicles in the broader UK population.

We further explored how users from our sample engaged with automated EV charg-

ing. Two key patterns emerged: strong adherence to the automation schedule and a high

degree of behavioral consistency across users. Together, these findings suggest that man-

aged charging was generally well integrated into users’ routines with minimal disruption.

We begin with evidence of adherence to the automation schedule, which provides a
30
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useful proxy for satisfaction with the tariff. We analyze 2,359 IO Go participants’ use

of the “bump" function, which allows them to override the default schedule and initi-

ate immediate charging. We find that 55% of users never used the bump feature at all

(Figure A11), and bump events accounted for only 2.3% of total IO Go electricity con-

sumption. These infrequent overrides, consistent across treatment groups, indicate that

the AI managed charging schedule is widely accepted and rarely disrupted. This is also

consistent with what we have seen in Figure 4, where the sustained uptake of IO Go

suggests that trial participants generally accepted the automated approach.

Figure 8: Hourly Patterns of EV Plug-In and Charging Behavior
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Notes: Panel (a) shows, by hour of day, the percentage of electricity consumption that occurred during that hour. This
consumption is further divided into charging triggered by bump (charging initiated by users overriding the schedule)
versus charging scheduled by IO Go. Panel (b) plots, by hour of day, the percentage of active users who had their EVs
plugged in. A user is considered active during a given hour if that hour falls between their first-ever and last-ever
recorded plug-in event. The analysis is based on data from 2,359 IO Go customers.

Preferences for charging settings further reinforce this uniformity. 61% of trial par-

ticipants preferred their vehicle to finish charging between 07:00 and 09:00, and 93% set

their desired state-of-charge (SOC) at 80% or higher (Figure A8a). Plug-in patterns also

followed a predictable rhythm: more than half of plug-in events occur within 24 hours

of the previous one, typically following a post-work return home and preceding the next

morning’s commute (Figure A8b).

If customers were to begin charging as soon as they plugged in, typically between

5:00 and 7:00pm, it would place significant strain on peak demand. Managed charging

avoids this issue by decoupling plug-in time from charging time; customers still enjoy the

convenience of plugging in when they arrive home, while AI managed scheduling shifts

the actual charging to off-peak hours, as illustrated in Figure 8.

Importantly, these behaviors are all consistent across our encouragement groups, sug-
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gesting that once trial participants opt into the tariff, they tend to use it in similar ways

(see Figures A9, A10 and A12). This behavioral consistency is mirrored in the relatively

homogeneous consumption impacts shown in Figure 6.

3.6 Value of AI managed charging beyond time-of-use tariff structure

The IO Go and Octopus Go tariffs both feature time-of-use pricing, but, importantly,

IO Go includes AI managed charging, whereas Octopus Go relies on customers manually

adjusting behavior in response to the tariff’s day and off-peak rates or setting up their

own automated charger schedules to align with the tariff (but note that we do not observe

settings from these trial participants). To understand the added value of AI managed

charging, we estimated how consumption under IO Go responded to the real-time system

price, relative to consumption under Octopus Go.31 While neither IO Go nor Octopus

Go participants were directly exposed to system prices, the AI management of IO Go

charging schedules responds to those prices on the retailer’s behalf. Thus, the observed

difference in elasticity reflects the supplier’s algorithmic responsiveness, not household-

level reactions to system costs.

Our analysis examined responsiveness to real-time system prices across three pe-

riods of the day: daytime (5:30–16:30), evening (16:30–23:30), and overnight off-peak

(23:30–5:30). We examined responsiveness using a Poisson regression, which accommo-

dates zero consumption and yields coefficients that can be interpreted directly as elastici-

ties of electricity consumption with respect to system prices. Table 1 reports results from

the following specification:

log(E[Yit]) = α + β1Dit + β2 log(Pt) + β3[Dit × log(Pt)] +µd (5)

where Yit is electricity consumption for trial participant i at date-hour t, Dit is an indi-

cator for IO Go participation, and Pt is the system price. The coefficient β2 captures the

price elasticity of demand among the baseline group (Octopus Go users), while β3 cap-

tures the differential elasticity for IO Go users. We also included fixed effects for day d, so

that coefficients are identified from within-day variation across participants. The sample

in this analysis comprised the subset of our original trial sample (n = 13,233) who signed

up for either IO Go or Octopus Go (n = 2,963).32

31In Great Britain, the system price is the market-wide wholesale price of electricity settled every half hour. It reflects
the cost of balancing supply and demand on the grid and is published by the National Energy System Operator (NESO).

32This analysis was not pre-specified. We have included it as an exploratory analysis to help to isolate the automation-
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Given that tariff assignment was not random, this analysis should be interpreted as

suggestive rather than causal. Many trial participants on Octopus Go were unable to

enroll in IO Go due to compatibility constraints rather than personal preference, limiting

selection into IO Go to some extent. However, even where this is the case, tariff choice

remains mechanically correlated with vehicle and charger type; and, it is true that some

Octopus Go customers may actively have chosen not to enroll in IO Go to retain autonomy

over their charging schedule.

Overall, we found within-period differences in the price elasticity of demand from

IO Go and Octopus Go customers – where, again, note that the price was the system

price that consumers themselves never saw, but rather was a key input the AI used

when scheduling charging. During the evening period that encompasses peak hours

(16:30–23:30), trial participants on IO Go exhibited significantly greater price respon-

siveness than Go customers: a -0.044 additional price elasticity of demand. During the

overnight off-peak window (23:30–05:30), the price elasticity of demand was again signif-

icantly greater for IO Go customers than Octopus Go customers (by -0.024). By contrast,

during daytime hours (05:30–16:30), the interaction term is statistically indistinguish-

able from zero, suggesting no meaningful difference in price responsiveness between the

two groups, possibly due to fewer vehicles being plugged in during these hours (and thus

less available charge to shift).

When pooling hours across the full day, there is no evidence that IO Go partici-

pants systematically shifted more consumption from higher-priced periods toward lower-

priced ones than Octopus Go customers (Column (4) of Table 1). If anything, Octopus Go

customers appeared to consume relatively more when prices were low, a counterintuitive

pattern. One explanation is selection: Octopus Go adopters were those who received the

IO Go encouragement but opted into Octopus Go without any monetary incentive. These

participants may have had more demand flexibility than the incentivized IO Go partic-

ipants, which allowed them to be more able to respond to the ToU tariff structure. It is

also important to note that these estimates reflect total household consumption, not just

EV charging. Thus, the apparent responsiveness of Octopus Go users could also reflect

shifts in non-EV household load to overnight hours, rather than differences in automated

charging. Unfortunately, we lack telemetry data for Octopus Go customers to directly

test this mechanism. Finally, differences in the composition of the two groups may also

contribute to the pattern, with Octopus Go participants consuming more in low-price

related mechanisms.
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periods than IO Go customers. The relative balance of baseline covariates between IO

Go and Octopus Go users, shown in A13, helps alleviate concerns about compositional

differences.

Our synthesis of these results is that within defined periods, the AI managed schedul-

ing feature in IO Go shifted consumption away from high-price hours more aggressively

than trial participants exposed solely to Octopus Go’s ToU pricing. This enhanced re-

sponsiveness likely reflects the supplier’s ability to algorithmically optimize charging

schedules when vehicles were most likely to be plugged in. By contrast, Octopus Go

customers received a static overnight rate and had to determine their charging behavior

manually, leading to flatter responsiveness within periods.

Table 1: Responsiveness to Systems Prices

period 5:30-16:30 16:30-23:30 23:30-5:30 All Hours
Model: (1) (2) (3) (4)

Variables
IO Go 0.075∗∗ 0.077∗∗ -0.119∗∗∗ 0.089∗∗∗

(0.030) (0.031) (0.036) (0.025)
log(Price) 0.047∗∗∗ -0.003 0.010 -0.125∗∗∗

(0.008) (0.010) (0.013) (0.010)
IO Go × log(Price) -0.004 -0.041∗∗∗ -0.021∗ 0.017∗∗

(0.009) (0.011) (0.011) (0.008)

Fixed-effects
date Yes Yes Yes Yes

Fit statistics
Octopus Go Mean 1.08 0.656 0.968 1.79
Observations 6,178,064 4,489,911 4,257,014 14,924,989

Clustered (User & date-hour) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: This table reports estimates from Equation (5), examining how average hourly elec-
tricity consumption under IO Go and Octopus Go responds to system prices. Column (1)
covers daytime hours (05:30–16:30), column (2) evening (16:30–23:30), column (3) overnight
off-peak (23:30–05:30), and column (4) pools together hours across the whole day. All regres-
sions included day fixed effects, so coefficients are identified from within-day variation across
participants; standard errors were clustered by user and hour.

Taken together, these results indicate that managed charging under IO Go not only

shifted demand away from the peak, but also redistributed it within periods in a way that

was responsive to real-time system costs. These findings suggest that managed charging

can outperform conventional time-of-use tariffs in aligning household electricity con-

sumption with the dynamic needs of the grid, closer to real-time.
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4 Alternative estimation strategy: difference-in-differences

In addition to our experimental design, we leveraged a differences-in-differences (DiD)

approach using observational data to estimate the impact of adopting IO Go on house-

hold electricity consumption. This strategy exploited the staggered, voluntary adoption

of IO Go across Octopus Energy customers in 2023.

Comparing estimates from the DiD to RCT allows us to contrast the behavior of vol-

untary early adopters of managed charging (captured by the DiD) with that of harder-

to-recruit individuals who required external encouragement to adopt (captured by the

RCT). The RCT sample may better reflect the future mainstream population, who are not

proactively engaged, but require more pricing and marketing interventions to adopt man-

aged charging. Some of the observed differences may also reflect other factors: changes

to the Intelligent Octopus algorithm over time, evolving day-ahead price profiles (par-

ticularly as the volatility of the energy crisis subsided), or methodological differences,

such as the potential for selection bias in the DiD estimates, as highlighted in critiques of

observational methods (LaLonde, 1986; Imbens and Xu, 2024).

4.1 Empirical strategy

We began with a sample of 100,986 customers who adopted Intelligent Octopus Go

(IO Go) at some point in 2023. To isolate the effect of IO Go from other contempora-

neous changes, we further restricted the sample to customers who likely already owned

an EV by December 2022, using the methodology outlined in Section 2.1. This ensured

that observed changes in consumption patterns are due to changes in charging behavior,

rather than the initial uptake of EVs. These restrictions resulted in a sample of 18,192

customers.33

We implemented a standard event-study difference-in-differences estimator, allowing

for staggered adoption and dynamic treatment effects, following Callaway and Sant’Anna

(2021). We made a parallel trends assumption based on “not-yet-treated" units. For each

group of units first treated in week g, and for each week t ≥ g, we defined the group-time

33This restriction was not specified in our pre-analysis plan. However, preliminary analysis revealed that failing to
condition on EV ownership by December 2022 would conflate the effects of tariff adoption with those of initial EV
uptake, thereby biasing our estimates of charging behavior.
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average treatment effect on the treated (ATT) as:

AT T (g, t) = E[Yt −Yg−1 | G = g]−E[Yt −Yg−5 |Dt = 0, G , g] (6)

where G = g denotes the cohort of units first treated at time g. We estimate both (1) ag-

gregate group-time effects, and (2) a single post-treatment estimate, constructed as the

weighted average of all group-time ATT estimates, with weights proportional to group

size. To mitigate potential bias from anticipation effects, we exclude the four weeks prior

to adoption from our estimation. Accordingly, our reference period, Yg−5, is hourly con-

sumption measured five weeks prior to the treatment.(Roth, 2024).34

Our treatment assessment therefore relied on the following parallel trends assump-

tion: absent adoption, treated and not-yet-treated households would have experienced

similar trends in electricity use. We assessed the plausibility of this assumption by ex-

amining pre-treatment event-study coefficients, which showed no systematic differences

across groups.

In addition, to improve comparability with the RCT estimates and probe underlying

mechanisms, we estimated weighted versions of Equation 8, reweighting the DiD sam-

ple match the RCT sample based on pre-treatment tariff type. The RCT explicitly tried

to exclude customers with any prior smart tariff usage.35 Since smart tariffs incorpo-

rate time-of-use pricing structures, this exclusion disproportionately removed time-of-

use tariff users from the RCT sample. As a result, only 14% of RCT participants were on

a time-of-use tariff at baseline, compared to 75% in the DiD sample.36 To align the tariff
composition across the two groups, we calculated the baseline shares of standard versus

time-of-use tariff users in each sample. We then reweighted the DiD observations by the

ratio of RCT to DiD shares, ensuring that the reweighted DiD sample better reflected the

RCT’s pre-treatment tariff distribution. 37

34We assume that once a customer first adopts IO Go, they remain “treated” in the sense that their experience
with the tariff continues to shape their behavior, even if they subsequently switch to another Octopus tariff (Callaway
and Sant’Anna, 2021). In practice, some customers do have more complex tariff histories. Under the irreversibility
assumption, their electricity consumption patterns are considered to remain influenced by IO Go from the point of
initial adoption. We view this as reasonable for two reasons: (1) 90% of customers who adopt IO Go subsequently
remain on it for the entire research period, and (2) it is plausible that IO Go induces some degree of habit formation,
both in EV charging routines and in household electricity use more broadly.

35This exclusion was not perfect; a small number of customers who previously had smart tariffs were part of our trial
sample. Smart tariffs are tariffs that require smart meters because their half-hourly unit rate changes.

36For historical reasons, there are a handful of time-of-use tariffs that are not “smart” tariffs; the most well-known
of which is called “Economy 7”, a tariff introduced in the 1970s to incentivize overnight electricity use, particularly for
storage heaters by offering cheaper rates during a fixed seven-hour off-peak window. In recent years, some EV owners
also adopted Economy 7 as a way to charge their vehicles at lower cost.

37We also implemented propensity-score reweighting. Specifically, we estimated the probability of being in the RCT
(vs. DiD) sample using a logit regression with the following covariates: (1) tariff type prior to treatment, (2) total
electricity consumption in December before the study period (December 2022 for DiD, December 2023 for RCT), (3)
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4.2 Difference-in-differences results

Figure A24 shows that the difference-in-differences estimates are notably smaller than

those from the RCT. In the unweighted specification (Column 1), IO Go adoption is asso-

ciated with a 0.05 kWh (8%) average hourly reduction in peak-period consumption, and

a 0.202 kWh (12%) increase during off-peak hours. In contrast, the RCT estimates imply

much larger shifts: a 0.581 kWh (42%) decrease during peak periods and a 0.481 kWh

(50%) increase off-peak.

This discrepancy appears to be largely explained by differences in baseline time-of-use

tariff usage. Column 2 presents the results after reweighting the DiD sample to match the

RCT sample’s pre-treatment tariff distribution. After reweighting, the estimated increase

in off-peak consumption in the DiD analysis (0.562 kWh) the RCT analysis (0.481 kWh).

The reduction in peak consumption is considerably smaller in the DiD analysis: 0.242

kWh compared to 0.581 kWh in the RCT. This weaker peak effect is compensated for by

a decline in daytime, non-peak consumption in the DiD sample, as shown in Figure A13.

We hypothesize that the observed differences in the timing of impacts throughout the day

arise from compositional differences between IO GO participants and those in our RCT

sample, with self-selected participants likely having greater daytime flexibility. While

we cannot directly test this hypothesis, we note that in a separate survey conducted by

our partner among households with LCTs, among those that own an EV, approximately

58% have a smart thermostat and 9% have a heat pump. This suggests considerable

potential for daytime load shifting offered by these technologies. In this survey, around

2,000 respondents were part of our DiD sample, and 20 were part of our RCT sample

Thus the RCT targeted a sample whose characteristics made their baseline consump-

tion less aligned with IO Go’s optimization – i.e., because their charging behavior was

not previously responding to dynamic or off-peak pricing, leaving more scope for man-

aged charging to change consumption in both peak and off-peak hours. We also estimate

cohort-specific treatment effects, defining cohorts by the week of adoption as shown in

Figure A14; we find that treatment effects are relatively homogeneous across cohorts.

Taken together, this homogeneity in treatment effects across cohorts, combined with

the close alignment of RCT and reweighted DiD estimates, suggests that the impact of

the share of consumption occurring during peak hours, (4) Octopus tenure, (5) IMD rank, and (6) property value. The
resulting propensity scores were then used as weights in the DiD regression. However, we found that only the pre-
treatment time-of-use tariff indicator had a substantive effect on the results. Given this, we opted to show the results
only of the simpler tariff-based reweighting approach described in the main text.
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IO Go is relatively stable across adopters. The primary source of variation appears to

be baseline charging behavior, particularly whether customers were already on time-of-

use tariffs prior to adoption, rather than any inherent heterogeneity in responsiveness to

managed charging.

Figure 9: Difference-in-Differences Estimate of IO Go
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Notes: This figure reports staggered difference-in-differences estimates of the effect of adopting the IO Go tariff on
hourly electricity consumption (in kWh) during (a) peak hours (16:30–20:30) and (b) off-peak hours (23:30–05:30),
using a sample of 18,192 customers who first-ever enrolled in IO Go in 2023. Each panel plots treatment effects
relative to the week before adoption. Estimates are reported under two specifications: (i) unweighted; (ii) and weighted
by whether the trial participant was previously on a time-of-use tariff. Estimates are computed using the Callaway
and Sant’Anna (2021) estimator. Percentages represent post-treatment effects as share of the pre-IO Go consumption
levels. Post-treatment effects are estimated using average of all group-time average treatment effects, with weights
proportional to the group size.
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5 Welfare impacts

The large shifts in consumption from peak to off-peak hours, as seen in Section 3.3,

have four potential benefits: (1) benefits to consumers from lower electricity bills, (2)

lower electricity procurement costs to the electricity supplier, (3) climate change mitiga-

tion benefits via CO2e abatement, and (4) reduced grid operation and stabilization costs.

The CO2e abatement arises via two pathways: directly, through reduced consumption

during high-emissions hours (a shift we identified using our randomized encouragement

design); and indirectly, through potential substitution from internal combustion engine

(ICE) vehicles to EVs caused by lower electricity bills (also identified through our ran-

domized encouragement) that reduce the lifetime cost of EV ownership. We believe this

latter behavioral response may be important, but we acknowledge that it is uncertain and

speculative.

In this section, we first outline our methods for estimating the various benefits and

costs of IO Go adoption. We then present the direct benefits accrued in 2024. Finally, we

apply the Marginal Value of Public Funds (MVPF) framework developed by Hendren and

Sprung-Keyser (2022) to assess the welfare implications of subsidizing managed charg-

ing.

5.1 Estimation

To estimate the magnitude of these benefits, we combined administrative data from

Octopus Energy with external inputs and applied outcome-specific methods. For con-

sumer benefits, we used administrative data on daily average electricity bills per kWh.

We analyzed the impact on trial participants’ bills using an instrumental variables speci-

fication analogous to Equation (4), but where Yiht is the mean daily bill (in £) for user i on

day t. Our outcome is the amount customers paid per kwh of electricity, and we weight

the regression by the consumption each day.38

For supplier procurement costs, we applied an analogous IV analysis. Octopus Energy

provided administrative data on the cost per kWh of electricity during each half-hour of

the day. These costs include both the wholesale price of power and non-energy charges

such as transmission and distribution fees, but exclude grid services, such as participation

38Since IO Go customers typically charge only on a subset of days, a simple unweighted comparison across all days
would dilute the treatment effect by including many days with no charging activity.

39



in ancillary markets. The wholesale price itself is a blend of hedged prices (days, weeks,

and months ahead), day-ahead prices, intra-day prices, and the final system price for

the half-hour. The exact weighting of these elements is somewhat subjective and may

vary over time, but we believe this measure more closely approximates the supplier’s

actual procurement costs than using the system price alone. Here, the outcome is Octopus

Energy’s total daily procurement cost.

To assess direct emissions impacts from shifting consumption to lower-CO2e-intensity

hours, we multiplied trial participant electricity consumption in each half-hour inter-

val by the corresponding average Marginal Operating Emissions Rate from WattTime,

and aggregated these values to the daily level.39 We analyzed the impact on CO2e from

electricity consumption using an instrumental variables specification analogous to Equa-

tion (4), but where Yiht is CO2e from electricity consumption (in grams of CO2e) for trial

participant i on day t.40 To estimate the potential CO2e abatement benefits from induced

substitution of internal combustion engine (ICE) vehicles to EVs, we combined IO Go bill

savings with existing estimates of EV price sensitivity.41

Finally, managed EV charging may contribute to avoiding system costs, though the

magnitude of these benefits is uncertain. Some top-down modeling studies suggest po-

tentially large system-wide gains. We discuss the estimates from one such study in the

contexts of our results in the next section. 42

39As described in (as described in Section 2.6, the Marginal Operating Emissions Rate is the emissions associated
with the marginal change in load on the grid (WattTime, 2022).

40We monetize this using the UK government’s SCC, which is approximately £250 per tonne of CO2e. This is calcu-
lated by estimating the marginal abatement cost (i.e., resource costs) per tonne of CO2. The government estimates the
amount of CO2e that is needed to meet the UK’s future CO2e targets and walks up the marginal abatement cost curve
until it hits that CO2e target, which hits costs at £250 per tonne of CO2e. This UK government approach is in contrast
to how other countries, like the US, estimate the social cost of carbon. Those other countries use the marginal damage
per tonne of CO2e from integrated assessment models.

41We began by estimating the average lifetime electricity bill savings from IO Go over a ten-year vehicle lifespan,
discounted to present value. We treated this as a reduction in the total cost of EV ownership. Applying a price elasticity
of EV demand of -2.547 from Hahn et al. (2024), we inferred the corresponding proportional increase in EV adoption.
To translate this into absolute uptake, we used estimates from Department for Transport (2024) that approximately
6.7% of UK households (1.95m of 28.8m households in the UK) purchase a new car each year. The resulting increase
in EV uptake was multiplied by the difference in lifecycle CO2e emissions between ICE vehicles (£8003.89) and EVs
(£3259.66) (Hahn et al., 2024), yielding £4744.23 in CO2e benefits per induced switch. We scaled these annual impacts
using government projections of ICE vehicle sales, which decline over time (Department for Transport, 2023), and
discounted future abatement to present value using a 3.5% rate recommended by HM Treasury (2020).

42In our pre-analysis plan, we pre-specified estimating CO2e impacts using the ITT framework. We did not pre-
specify the use of IV estimation for bills or CO2e savings. We adopt the IV approach here because it more directly
captures the causal effect of IO Go adoption—the quantity of substantive interest. While our pre-analysis plan focused
on MVPF calculations rather than consumer bills, we now report bill savings as well, as they provide an important and
policy-relevant measure of consumer benefits.
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5.2 Benefits/savings from adoption of managed charging

AI managed charging presented large consumer bill benefits. Figure 10 presents the

estimated benefits. We found that managed charging reduced consumer electricity bills

by £0.0397 per kWh, an approximately 18% decline relative to the control group. Applied

to average consumption over the analysis period, this implies a total bill reduction of

approximately £343 during our study.43

The electricity retailer saw similar savings in procurement costs (procurement costs

include the wholesale price of power and non-energy charges such as transmission and

distribution fees; 95% CI: £-261 to £766), implying near 100% pass-through of savings to

trial participants, at least based on the period of our analysis (2024).44

Managed charging also yielded positive environmental benefits. Direct CO2e abate-

ment from shifting electricity consumption to cleaner off-peak hours generated a decrease

of 124kg CO2e per trial participant in 2024, which translates to estimated benefits of £35

based on a carbon value of £287 per tonne of CO2e emitted (Department for Energy Secu-

rity and Net Zero, 2023), though with wide uncertainty (95% CI: £-253 to £287). Indirect

CO2e abatement, arising from substitution from ICE vehicles to EVs, due to lower operat-

ing costs of EVs,45 generated a further decrease of 143kg CO2e, or £40.9 (95% CI: £20.6 to

£61.2), in estimated benefits.46 From a resource cost per tonne of CO2e abated, we found

a lower bound resource cost per tonne of around -£2,445 for switching to the AI managed

EV tariff, which is an order of magnitude lower than the next best technology (Gosnell

et al., 2020; Hahn et al., 2024). When we use the standard tariff as the counterfactual, the

resource cost per CO2e tonne abated is -£3,253.

For savings from avoided system costs, we looked in particular at Franken et al. (2025),

who estimated that fully flexible EV-related electricity demand, relative to a baseline with

no flexible load, could reduce annual system costs in Great Britain by up to £0.25 billion

in 2025 and as much as £4 billion by 2035.47 These savings arose from both operational

43Based on the average annual electricity consumption of control group trial participants not enrolled in an EV tariff
(9,063 kWh).

44The point estimate on procurement cost savings was smaller than the point estimate on bill savings, but the es-
timates’ confidence intervals overlap each other’s point estimates; also note that we have not included revenue from
ancillary markets in the estimation of procurement cost savings.

45We are assuming that consumers value fuel efficiency in their decisions to buy a vehicle, which has some support
Grigolon et al. (2018); Forsythe et al. (2023).

46The confidence intervals for indirect CO2e abatement given in Figure 10 reflect only the uncertainty from the
regression of consumer bill savings on EV tariff adoption. This likely understates the true uncertainty, which is outside
the scope of this research. Additional sources of uncertainty include the price elasticity of EV adoption, the future cost
trajectory of EVs, and the relationship between EV adoption and net CO2e damages.

47Their estimate was based on a whole-system linear cost optimization model, calibrated to assumptions used by the
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Figure 10: Benefits of Adopting EV Tariff per Household in 2024
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Notes: This figure presents estimated benefits in 2024 of adopting an EV tariff. Trial participant bill savings are derived
from causal estimates using administrative data on daily average electricity bills per kWh; the estimated savings are
£343 per vehicle (95% CI: £173 to £512). Procurement cost savings are estimated at £237 (95% CI: £-261 to £766).
(These costs include both the wholesale price of power and non-energy charges such as transmission and distribution
fees, but exclude grid services, such as participation in ancillary markets.) Direct CO2e abatement reflects emissions
reductions from shifting electricity consumption to off-peak periods; these are valued at £35 (95% CI: £-253 to £324),
using half-hourly marginal emissions intensity data matched to observed load-shifting. Indirect CO2 abatement from
ICE to EV substitution is valued at £40.9 (95% CI: £20.6 to £61.2), estimated by combining observed IO Go bill savings
with price elasticity-based projections of EV adoption and associated emissions reductions. Grid benefits are sourced
from Franken et al. (2025), showing per-vehicle value under a scenario of 100% smart charging adoption. The shaded
area illustrates the range of estimates across multiple modeled scenarios, where benefits range from £99 to £146 per
year in 2035.

efficiencies, such as increased use of lower-marginal-cost renewable generation, and cap-

ital savings, including deferred investment in firm capacity and grid infrastructure. No-

tably, the study found diminishing marginal returns: the first 25% of EV users adopting

managed charging account for 50% (£2 billion in 2035) of the projected savings.48

Our trial suggests that nearly all peak EV load can be shifted through managed charg-

ing, and that this behavior can be sustained for over a year, consistent with the assump-

UK system operator. To the best of our knowledge, Franken et al. (2025) is the study most closely aligned with our
context on two dimensions. First, it matches our outcome of interest: assessing the grid impacts of managed charging in
monetary terms. By contrast, many other studies focus on EV deployment without more detailed modeling of managed
charging (Heuberger et al., 2020), or in terms of electricity consumption, without translating to monetary benefits
(Crozier et al., 2020). Second, it is aligned in the geographic focus on Great Britain. There are several relevant studies
examining system benefits of managed charging in California (Li and Jenn, 2024) or the United States more broadly
(Powell et al., 2022), but to the best of our knowledge, Franken et al. (2025) provides the most directly applicable
evidence for our setting in Great Britain. For an overview of studies relevant to our setting, see Thornhill and Deasley
(2018).

48As Franken et al. (2025) notes, “The first units of flexible EV charging tap into uncontested renewable generation,
unlocking large benefits with a relatively modest flexibility rollout. However, beyond the 25% mark, excess renewable
generation becomes more scarce slowing down further gains."
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tions in Franken et al. (2025). This implies that system-level benefits in the range of £2-4

billion could be feasible, conditional on widespread tariff uptake. When expressed on

a per-vehicle basis, assuming 27 million EVs on the road by 2035 (consistent with the

"Leading the Way" Future Energy Scenario from the UK National Energy System Oper-

ator (2023), in keeping with the analysis in Franken et al. (2025)), this equates to ap-

proximately £146 in system savings per vehicle in 2035 under universal managed charg-

ing.49 Under “constrained” managed charging50, savings fall modestly to £120 per vehi-

cle. When adding flexible heat demand to the optimization, which cannibalizes some of

the benefits from EV flexibility, the per-vehicle EV contribution falls to £99.51

5.3 Welfare impacts of subsidizing managed charging

We next evaluated the welfare implications of subsidizing managed charging, using

the £50/month incentive (total £150 across three months) offered to trial participants

as a proxy subsidy. We considered impacts over one, five, and 10 years (2024–2033),

discounting future values at the 3.5% rate recommended by HM Treasury (2020). Ten

years is a reasonable lower-bound estimate of vehicle lifetime (Bento et al., 2018; Held

et al., 2021; Kolli, 2011). However, the duration of benefits attributable to the subsidy

also depends on how long subsidized customers remain more likely than non-subsidized

customers to adopt IO Go. This compliance advantage may decay more quickly than the

vehicle lifetime, although in our data the encouragement effect remains relatively stable

over the full year of observation.

The relevant welfare benefits in this case are (1) partial transfer of the subsidy to

consumers and (2) CO2e abatement. To estimate the share of the subsidy that constitutes a

transfer, we inferred the proportion of marginal versus inframarginal adopters. Adoption

was 6.98% in the email-only group and 9.31% in the £50/month group, implying that

25% of adopters were marginal.52 We assumed inframarginal adopters (75%) valued the

£150 incentive at its full face value (i.e., a 100% transfer of the total £150 to consumers).

For marginal adopters (25%), we assumed an average valuation of 50% of the subsidy.53

49In 2025, Franken et al. (2025) estimates the value is £94 per EV; the value is lower than in 2035 due to greater grid
constraints in 2035 potentially solved by EV flexibility.

50In Franken et al. (2025), the constraints are: automation only between 12 am and 4 am and 12% of consumers opt
out of flexible charging each day.

51These system benefits estimates are consistent with existing industry and research findings, and sit at the lower
end of reported ranges. For instance, The Utility Playbook: Turning EV Grid Risk into a $30 Billion Opportunity (2025)
projects system savings of between $145 and $575 per actively managed EV by 2035.

52Calculated as (9.31− 6.98)/9.31 = 25%.
53For marginal adopters, we do not observe whether the first or last £1 of the subsidy induced adoption. If it were the
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Combining these assumptions yields an average transfer of £0.875 per £1 of subsidy.

For welfare benefits from CO2e abatement, we applied the estimated per-adoption

benefit discussed above, but scaled it down to reflect that only 25% of adopters were

induced by the subsidy.54 We excluded reductions in trial participant bills from our

welfare calculation, invoking the envelope theorem: these trial participants could have

adopted IO Go without the subsidy but chose not to. We also assumed no producer sur-

plus changes (e.g., procurement cost savings for Octopus Energy), under the assumption

of a competitive retail electricity market. Finally, we excluded the indirect CO2e benefits

from increased EV adoption, since, again by the envelope theorem, a subsidy for man-

aged charging should not affect EV uptake among trial participants who were already

considering adoption.55

Changes in costs to the government include: (1) the subsidy itself, (2) lost VAT revenue

from reduced electricity bills, (3) with greater uncertainty, a climate-related fiscal exter-

nality (increased tax revenue from higher economic growth due to the climate mitigation

from CO2e abatement), and, most speculatively, (4) avoided costs associated with elec-

tricity grid balancing. The VAT loss is calculated as 5% of the £343 annual reduction in

electricity bills, totaling £12.42 less government revenue per customer. This translates to

a fiscal cost of approximately £3.10 for each marginal IO Go adopter. The climate-related

fiscal externality is 1.07%56 of the monetized value of CO2e abatement attributable to IO

Go adoption. This amounts to £3.22 in additional government revenue per marginal IO

Go adopter.

In total, these costs and benefits imply an MVPF of 0.887 over 1 year, 0.933 over 5

years, and 0.982 over 10 years.57 For the remainder of the discussion, we focus on the

10-year estimate, while estimates for 1 and 5 years are presented in A15.58 This MVPF

first, the entire subsidy would be valued; if the last, the valuation would approach zero. Following the classic Harberger
triangle approximation to deadweight loss (Harberger, 1964), and the approach in Hendren and Sprung-Keyser (2020)
and Hahn et al. (2024), we assume a uniform distribution of latent subsidy valuations, consistent with a linear demand
curve.

54We used the point estimate of the CO2e impact, despite the statistical imprecision around that estimate.
55This welfare calculation deviates from our pre-analysis plan, but we believe these deviations more accurately reflect

the full set of social returns that would accrue under real-world implementation. For more details on exact deviations,
please see Appendix A.3.

56We assume that the UK accounts for 3.2% of global GDP (PwC, 2024), and that 33.5% of UK GDP accrues to
the government as tax revenue (Office for Budget Responsibility, 2024). The PwC estimates are a weighted average
of projections from national statistical authorities, EIKON from Refinitiv, IMF, Consensus Economics, the OECD, and
Fitch Solutions. We therefore use the PwC estimate as it consolidates projections from these institutions into a single
figure. The product of these shares yields 1.07%.

57As noted above, the duration of benefits depends not just on vehicle lifetime, but also on how long subsidized
customers remain more likely than non-subsidized customers to adopt IO Go.

58We also present MVPFs using two alternative SCC values: (a) Bilal and Känzig (2024), which estimates an SCC of
$1,367 for 2024, and (b) Interagency Working Group on Social Cost of Greenhouse Gases, United States Government,
which estimates an SCC of $55.3 for 2024.
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implies that for every £1 of fiscal cost to the government, the program generated £1.232

in societal benefits. The fiscal cost includes not only the direct subsidy but also the loss of

VAT revenue due to lower energy bills, bringing the total cost per £1 of subsidy to £1.255.

(i.e., 1.232
1.255 = 0.982). The ratio of these benefits to costs is then 0.982. We calculated this

using:

MVPF =
xds+Edx

xds+V dx+Cdx+Gdx
(7)

where x is quantity and s the subsidy. E represents CO2 benefits to individuals; V , C and

G represent VAT, climate change fiscal externalities, and avoided grid balancing costs

respectively.

Figure 11: Marginal value of public funds of subsidizing managed charging over 10
years, 2024-2033
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Notes: This figure presents the estimated costs and benefits of subsidizing adoption of the IO Go managed EV charging tariff over 10
years, from 2024-2033. Customer surplus is based on a decomposition of marginal and inframarginal adoption under the £50/month
offer, following the approach of Hahn et al. (2024). Direct CO2e benefits reflect emissions reductions from shifting electricity use
to cleaner hours, scaled to marginal adopters. Indirect CO2e benefits are excluded under the assumption that AI managed charging
subsidies do not affect EV uptake among inframarginal adopters. Estimated costs to government include the subsidy, lost VAT revenue,
and increased tax receipts from climate-related fiscal externalities. Grid balancing benefits are shown separately, based on Franken
et al. (2025) estimates of per-vehicle system savings under three scenarios. Only a share of these may accrue to government.
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The change in government costs from avoided grid balancing are uncertain. They

may be zero. In a well-functioning electricity market, the benefits of shifting to lower-

marginal-cost generation and deferring investment in generation, transmission, and dis-

tribution infrastructure should be internalized by market participants. Thus, while the

overall system benefits of IO Go may be large, only a small share of those would accrue

to the government. However, if there are market failures such that the value of EV flex-

ibility is not fully internalized, there may be rationale for further policy intervention to

incentivize managed charging, such as subsidies. We find that if £70 (48%) of the £146

in per-customer benefits in 2035 identified by Franken et al. (2025) were borne by the

government, the MVPF of the £150 subsidy would be infinite.59

6 Generalisability to other countries

A natural question is whether the effects we estimate in the United Kingdom gen-

eralize to other markets. Octopus currently offers IO Go in seven countries, of which

four—Germany, Spain, the United States, and the United Kingdom—have a substantial

number of customers. Exact customer counts are commercially sensitive and cannot be

disclosed, but all four markets have sufficient adoption to allow for meaningful com-

parisons of consumer behavior. Details on how IO Go is structured in each market are

presented in Figure A17.

To assess whether treatment effects may hold beyond the UK setting, we first examine

which dimensions of consumer behavior drive heterogeneity in our estimated impacts.

Specifically, we focus on behaviors that shape the potential for managed charging to shift

load from peak to off-peak hours. Because IO Go–specific telemetry is only available

once customers have adopted the tariff, we cannot directly observe these behaviors for

non-adopters. We therefore use a difference-in-differences design among participants in

experiment who later adopted IO Go. Approximately 55% of RCT participants adopted

IO Go during the incentivized period, producing a cluster of adoption times, but still

sufficient variation to support this analysis.

We estimate heterogeneous treatment effects by plug-in rate—defined both as the pro-

portion of hours in which a customer’s EV is plugged in and, separately, the proportion of

peak hours in which the EV is plugged in. We view these as descriptive measures rather
59In this context, “infinite” does not mean literally unlimited welfare gains; rather, it is a formal term indicating that

the government’s net fiscal cost is negative, so, following Hendren and Sprung-Keyser (2020), the policy is treated as
having an infinite MVPF (a Pareto improvement).
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than causal dimensions of heterogeneity, since plug-in behavior is itself influenced by

adoption. We find substantial heterogeneity: households with higher plug-in rates ex-

hibit larger shifts of consumption from peak to off-peak hours, as seen in Figure 12. In

contrast, other behavioral dimensions, namely “bump” behavior (manual overrides) and

user preferences for““ready-by” times or charging levels, shows little systematic variation

(Figure A18, Figure A19).

We then compare plug-in behavior across the four countries with available telemetry

data. Using a 2024 sample, we use a dataset of 24,063 UK customers, 4,338 in Germany,

2,561 in Spain, and 1,872 in the United States. To benchmark against earlier stages of

adoption, we also construct a group of early adopters in the UK: customers who enrolled

within the first six months after IO Go’s launch.

Across markets, we observe broadly similar charging and plug-in patterns. Customers

in Germany, Spain, and the United States exhibit higher plug-in rates than the average UK

customer in 2024, but lower rates than the UK early adopters. This pattern suggests that

as IO Go matures in these markets and reaches a broader customer base, the behavioral

profile of adopters is likely to converge toward that observed in the UK. Given that higher

plug-in rates are associated with larger peak-to-off-peak load shifts, our results imply that

treatment effects in other countries are likely to be similar to those estimated in the UK

once adoption scales.
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Figure 12: Heterogeneity in Impacts by Plug-in Behavior

(a) Impacts by Quintile of Plug-in Rate

(b) Impacts by Quintile of Plug-in Rate During Peak Hours

Notes: This figure reports staggered difference-in-differences estimates of the effect of adopting the IO Go tariff on
hourly electricity consumption, for participants who were a part of our experiment. Panel (a) shows impacts by the
quintile of the plug-in rate, and panel (b) shows impacts by the quintile of plug-in rate during peak hours (16:30-
20:30). Estimates are also separately estimated by peak (16:30-20:30) and off-peak hours (23:30-5:30). Estimates are
computed using the Callaway and Sant’Anna (2021) estimator. Error bars represent the 95% confidence interval.
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Figure 13: Plug-in Rate By Hour-of-Day

Notes: This figure reports staggered difference-in-differences estimates of the effect of adopting the IO Go tariff on
hourly electricity consumption, for participants who were a part of our experiment. Panel (a) shows impacts by the
quintile of the plug-in rate, and panel (b) shows impacts by the quintile of plug-in rate during peak hours (16:30-
20:30). Estimates are also separately estimated by peak (16:30-20:30) and off-peak hours (23:30-5:30). Estimates are
computed using the Callaway and Sant’Anna (2021) estimator. Error bars represent the 95% confidence interval.
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7 Discussion

Our findings make three key contributions to the literature. First, using a field trial

unique in its scale, we provided evidence on how real-time managed charging can re-

shape EV charging behavior at scale in the UK. Specifically, we found that managed

charging led to a 42% reduction in household electricity demand during peak hours,

with all of this demand shifted to low-cost, low-emission off-peak periods overnight. In

contrast to prior observational studies or simulations, our randomized incentive design

enabled causal inference about the elasticity of managed EV charging consumption to

energy system price signals. This bridges a critical gap between the theoretical benefits

of demand-side flexibility and the practical realities of consumer responsiveness.

These consumption impacts occurred without requiring manual input or sustained

behavior change from trial participants: over half of adopters never overrode the auto-

mated schedule, and override events comprised just 2.3% of electricity use. This high-

lights the potential of automation through AI to unlock demand-side flexibility while

respecting EV owners’ preferences and constraints.

The automation embedded in IO Go appears to enhance responsiveness to grid sig-

nals, outperforming static time-of-use tariffs, especially during the evening and overnight

periods of the day. This reinforces the argument that, as EVs move from early to mass

adoption, managed charging responsive to real-time grid conditions is needed to avoid

“herding” behavior and new peaks that may result from static time-of-use schedules. To

reinforce this market price, network operators may consider more dynamic charges to

manage congestion on low-voltage networks contending with high EV penetration.

Second, by comparing the outcomes of our randomized experiment with those from

a standard difference-in-differences design, our results suggest that the impact of man-

aged charging was relatively stable across different types of adopters. Impacts were ho-

mogeneous across cohorts of adopters in our difference-in-differences sample, and – af-

ter reweighting our difference-in-differences sample to match the RCT sample on pre-

adoption tariff, we found similar results between the two evaluations. Thus the pri-

mary source of variation in impact appears to be baseline charging behavior, particularly

whether trial participants were already on smart or off-peak tariffs prior to adoption,

rather than any inherent heterogeneity in responsiveness to managed charging.

Third, we quantified the welfare impacts across four dimensions – consumer costs,
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producer profits, environmental outcomes, and avoided costs associated with electricity

grid balancing. We found that the managed charging reduced trial participants bills sub-

stantially. It also caused large reductions in CO2e emissions and retailer procurement

costs, though the estimates were imprecise and should be interpreted with caution.

These findings carry significant policy relevance. As electricity systems transition to-

ward variable renewable generation, flexible demand from EVs presents a major oppor-

tunity for system balancing. Policymakers should ensure wholesale markets reflect the

temporal and locational value of electricity and lower non-commodity electricity costs to

ensure suppliers, aggregators, and other market participants are exposed to price as close

as possible to the real-time marginal cost of electricity.

All in all, we have provided causal evidence that AI managed charging – when paired

with real-time pricing on the retailer procurement side without direct pass-through to

customers – can substantially reshape electricity consumption patterns at scale. By causally

identifying behavioral responses, we have shown that, in Britain, managed charging of

EVs can reduce peak load without contravening consumer preference. Our findings im-

prove scientific understanding of the economics of energy consumption and market de-

sign, highlighting how well-structured incentives and dynamic pricing might align pri-

vate behavior with policy objectives. Ultimately our study suggests that, as electrifica-

tion expands in Britain and other advanced economies, managed charging can serve as a

tool for aiding grid reliability and realizing environmental outcomes via a market-based

framework.
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A Appendix

A.1 Tables

Table A1: Experimental Balance

Variable Control Mean Email + £0/Mth Email + £5/Mth Email + £50/Mth Email + £50/Mth (No Bump)

Not Always Octopus Customer 0.26 0.00 0.00 0.00 0.00
(0.01) (0.02) (0.02) (0.02)

Octopus Tenure 2.72 -0.03 -0.01 -0.03 -0.01
[1.63] (0.04) (0.06) (0.06) (0.06)

Proportion Total kWh Peak 0.23 0.00 0.00 0.00 0.00
[0.08] (0.00) (0.00) (0.00) (0.00)

Smart Tariff Onboarding Processes 0.22 0.00 0.00 -0.01 0.00
[0.47] (0.01) (0.02) (0.02) (0.02)

Structural Winnings (GBP/kWh) 752.64 -9.72 -17.76 -26.70 -18.12
[684.94] (16.50) (25.08) (23.84) (25.02)

Total kWh 4,082.53 -42.42 -33.33 -65.43 -38.96
[2,599.11] (62.80) (97.97) (91.35) (94.82)

Total kWh Stdev 0.77 -0.01 -0.01 0.00 0.00
[0.25] (0.01) (0.01) (0.01) (0.01)

N 2,205 7,720 1,101 1,102 1,105

Note: The first column shows the mean and [standard deviation] for the control group. Each row and each subsequent encouragement
column represents an individual regression of the row variable on an indicator for receiving the encouragement in the column. The
encouragements appear to be balanced on baseline characteristics. The standard errors are in parentheses. Density plots of these covariates
are shown in Figure A2. Detailed definitions of these covariates can be found in Appendix A.4.2.
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Table A2: Impact of Encouragements on Take-up of IO Go

Dependent Variable: IO GO
Model: (1)

Variables
Email + £0/Month 0.034∗∗∗

(0.004)
Email + £5/Month 0.033∗∗∗

(0.007)
Email + £50/Month 0.059∗∗∗

(0.008)
Email + £50/Month (No Bump) 0.057∗∗∗

(0.008)
Post-Incentive Period 0.004

(0.004)
Email + £0/Month × Post-Incentive Period -0.003

(0.004)
Email + £5/Month × Post-Incentive Period -0.006

(0.007)
Email + £50/Month × Post-Incentive Period -0.003

(0.006)
Email + £50/Month (No Bump) × Post-Incentive Period -0.016∗∗

(0.006)

Fixed-effects
Block Yes
Week of Year Yes

Fit statistics
Control Mean (Incentive Period) 0.0365
Test £0 = £50 0.002
Test £0 = £50 (No Bump) 0.003
Observations 661,891

Clustered (Participant & Week of Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: This table shows the effects of four email-based encouragements on adopting IO
Go in the 12 months since emails were sent out. The outcome is a binary indicator
for weekly use of the Octopus Go tariff. Encouragement indicators are interacted an
indicator for whether the week is during the incentive period, three months after the
start of the trial. The specification controls for fixed effects for randomization block
and week-of-year. Standard errors, clustered by participant and week, are reported in
the parentheses. Mean IO Go take-up rate during the incentive period is reported for
the control group. “Test £0 = £50" is the p-value on the test of equality between the first
and third coefficient; “Test £0 = £50 (No bump)" is the p-value on the test of equality
between the first and fourth coefficient.
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Table A3: Robustness, Impact of Encouragements on Take-up of IO Go, Daily Data

Dependent Variable: IO GO
Model: (1)

Variables
Email + £0/Month 0.034∗∗∗

(0.004)
Email + £5/Month 0.034∗∗∗

(0.007)
Email + £50/Month 0.059∗∗∗

(0.008)
Email + £50/Month (No Bump) 0.057∗∗∗

(0.008)
Post-Incentive Period 0.004

(0.005)
Email + £0/Month × Post-Incentive Period -0.003

(0.005)
Email + £5/Month × Post-Incentive Period -0.006

(0.007)
Email + £50/Month × Post-Incentive Period -0.004

(0.007)
Email + £50/Month (No Bump) × Post-Incentive Period -0.017∗∗

(0.007)

Fixed-effects
Block Yes
Day Yes

Fit statistics
Control Mean (Incentive Period) 0.023
Test £0 = £50 0.002
Test £0 = £50 (No Bump) 0.003
Observations 4,580,025

Clustered (Participant & Day) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: This table shows the effects of four email-based encouragements on adopting IO
Go in the 12 months since emails were sent out. The outcome is a binary indicator for
daily use of the Octopus Go tariff. Encouragement indicators are interacted an indicator
for whether the date is during the incentive period, which is the three months after the
start of the trial. The specification controls for fixed effects for randomization block
and week-of-year. Standard errors, clustered by participant and day, are reported in the
parentheses. Mean IO Go take-up rate during the incentive period is reported for the
control group. “Test £0 = £50" is the p-value on the test of equality between the first and
third coefficient; “Test £0 = £50 (No bump)" is the p-value on the test of equality between
the first and fourth coefficient.
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Table A4: Impact of Encouragements on Electricity Consumption

Peak Off-Peak Overall Peak Off-Peak Overall
Model: (1) (2) (3) (4) (5) (6)

Variables
Email + £0/Month -0.029∗∗∗ 0.018 -0.005

(0.011) (0.012) (0.007)
Email + £5/Month -0.011 0.018 0.004

(0.016) (0.017) (0.010)
Email + £50/Month -0.013 0.025 0.003

(0.016) (0.017) (0.010)
Email + £50/Month (No Bump) -0.033∗∗ 0.026 -0.006

(0.016) (0.018) (0.010)
Any Encouragement -0.026∗∗ 0.019∗ -0.004

(0.010) (0.012) (0.007)

Fixed-effects
Week of Year Yes Yes Yes Yes Yes Yes
Block Yes Yes Yes Yes Yes Yes

Fit statistics
Control Mean 1.4 1 1 1.4 1 1
Observations 2,646,712 4,631,639 15,879,842 2,646,712 4,631,639 15,879,842

Clustered (Participant & Week of Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: Each column reports coefficients from separate regressions of hourly electricity consumption (in
kWh) on indicators for encouragement assignment. Columns (1), (2), and (3) estimate intention-to-treat
effects for each arm; columns (4), (5), and (6) pool all treatment arms into a single binary indicator. The
dependent variable is consumption during either the peak (16:30–20:30), off-peak (23:30–05:30), or over-
all hours. All regressions control for baseline consumption, and include fixed effects for week-of-year and
randomization block. Standard errors, clustered by participant and week, are reported in parentheses.
Means consumption for the control group are reported at the bottom of each panel.
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Table A5: Impact of Encouragements on Octopus Go Take-up

Dependent Variable: Octopus Go
Model: (1)

Variables
Email + £0/Month 0.0101∗∗∗

(0.0031)
Email + £5/Month 0.0099∗

(0.0052)
Email + £50/Month 0.0045

(0.0049)
Email + £50/Month (No Bump) 0.0066

(0.0051)

Fixed-effects
Block Yes
Week of Year Yes

Fit statistics
Control Mean 0.025
Observations 661,891

Clustered (Participant & Week of Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: This table shows the effects of four email-based encouragements
on adopting Octopus Go in the 12 months since emails were sent out.
The outcome is a binary indicator of for weekly use of the Octopus
Go tariff. The specification controls for fixed effects for randomization
block and week. Standard errors, clustered by participant and week, are
reported in parentheses. Mean Octopus Go take-up rate is reported for
the control group.

67



Table A6: Selection into IO Go and Baseline Characteristics

Variable (1) (2) (3) (4)

Email + £0/Month 0.044 0.043 0.044 0.041
(0.005) (0.005) (0.005) (0.005)

Email + £5/Month 0.042 0.042 0.042 0.039
(0.008) (0.008) (0.008) (0.008)

Email + £50/Month 0.060 0.059 0.059 0.055

(0.009) (0.009) (0.009) (0.009)
Email + £50/Month (No Bump) 0.062 0.061 0.062 0.057

(0.009) (0.009) (0.009) (0.009)
Structural Winnings (Z-Score) -0.012 -0.005 -0.002

(0.002) (0.004) (0.005)

Baseline TOU Tariff 0.023 0.025 0.018
(0.007) (0.009) (0.008)

Baseline kWh -0.008 -0.009 -0.007
(0.004) (0.005) (0.004)

IMD Tercile 2 0.038 0.040 0.035

(0.007) (0.008) (0.008)
IMD Tercile 3 0.034 0.039 0.034

(0.007) (0.008) (0.007)
Octopue Tenure (Years) -0.006 -0.006 -0.005

(0.001) (0.002) (0.002)

Covariates + Covariates interacted + Nonparametric struc. winnings
Sq. Corr. Coef 0.0043 0.0072 0.0085 0.0093
p-score range [0.035, 0.19] [0.023, 0.22] [0.0002, 0.32] [0.006, 0.25]

p-score R2 with (1) 0.60 0.51 0.44

Note: This table shows the estimation results of a logit regression of takeup of IO Go on encouragement group and
participants’ baseline characteristics. We show the marginal effects at the means of the covariates.

Table A7: Robustness, Impact of EV Tariff on Peak Consumption (kWh)

Main 4 Instruments £0/Mth £5/Mth £50/Mth £50/Mth (No Bump) 6 Months No Baseline

Model: (1) (2) (3) (4) (5) (6) (7) (8)

Variables
EV Tariff -0.581∗∗ -0.498∗∗ -0.697∗∗∗ -0.269 -0.305 -0.587∗∗ -0.473∗∗ -0.554

(0.224) (0.209) (0.247) (0.338) (0.230) (0.236) (0.214) (0.336)

Fixed-effects
Week of Year Yes Yes Yes Yes Yes Yes Yes Yes
Block Yes Yes Yes Yes Yes Yes Yes Yes

Fit statistics
Control Mean 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4
Observations 2,646,712 2,646,712 1,980,876 663,401 660,592 662,359 1,307,900 2,646,712
First Stage F-Stat 52.720 14.066 44.154 20.302 37.764 40.647 78.180 52.715

Clustered (Participant & Week of Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: This table reports IV estimates of the effect of adopting an EV tariff on hourly electricity consumption (kWh) during peak
hours (16:30-20:30). The instrument is an indicator for assignment to any email-based encouragement. Columns (1) is our main
specification, also reported in Figure 6; (2) defines a separate instrument for each encouragement group; (3) restricts to just the
£0/Month group and the control group; (4) restricts to just the £5/Month group and the control group; (5) restricts to just the
£50/Month group and the control group; (6) just the £50/Month (No Bump) group and the control group; (7) restricts to the
6 months after encouragement emails were sent out; (8) does not control for baseline consumption. All specifications control
for baseline consumption (except column 6), and fixed effects for randomization block and week. Standard errors, clustered by
participant and week, are reported in parentheses. The control mean is calculated over the same time periods for control group
trial participants not enrolled in an EV tariff. The bottom row shows the first-stage Wald F-statistic.
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Table A8: Robustness, Impact of EV Tariff on Off-Peak Consumption (kWh)

Main 4 Instruments £0/Mth £5/Mth £50/Mth £50/Mth (No Bump) 6 Months No Baseline

Model: (1) (2) (3) (4) (5) (6) (7) (8)

Variables
EV Tariff 0.481∗ 0.468∗ 0.501∗ 0.284 0.280 0.414 0.686∗∗∗ 0.118

(0.261) (0.244) (0.282) (0.400) (0.269) (0.270) (0.236) (0.392)

Fixed-effects
Week of Year Yes Yes Yes Yes Yes Yes Yes Yes
Block Yes Yes Yes Yes Yes Yes Yes Yes

Fit statistics
Control Mean 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Observations 3,970,004 3,970,004 2,971,234 995,188 990,964 993,611 1,961,825 3,970,004
First Stage F-Stat 53.449 14.283 44.658 20.564 38.473 41.213 78.912 52.756

Clustered (Participant & Week of Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: This table reports IV estimates of the effect of adopting an EV tariff on hourly electricity consumption (kWh) during
off-peak hours (23:30-05:30). The instrument is an indicator for assignment to any email-based encouragement. Columns (1)
is our main specification, also reported in Figure 6; (2) defines a separate indicator for each encouragement group; (3) restricts
to just the £0/Month group and the control group; (4) restricts to just the £50/Month group and the control group; (5) just the
£50/Month (No Bump) group and the control group; (6) restricts to the 6 months after encouragement emails were sent out; (7)
we do not control for baseline consumption. All specifications control for baseline consumption (except column 6), and fixed
effects for randomization block and week. Standard errors, clustered by participant and week, are reported in parentheses.
The control mean is calculated over the same time periods for control group trial participants not enrolled in an EV tariff. The
bottom row shows the first-stage Wald F-statistic.

Table A9: Robustness, Impact of EV Tariff on Overall Consumption (kWh)

Main 4 Instruments £0/Mth £5/Mth £50/Mth £50/Mth (No Bump) 6 Months No Baseline

Model: (1) (2) (3) (4) (5) (6) (7) (8)

Variables
EV Tariff -0.079 -0.060 -0.125 0.032 -0.038 -0.132 0.002 -0.203

(0.150) (0.140) (0.163) (0.226) (0.150) (0.159) (0.154) (0.247)

Fixed-effects
Week of Year Yes Yes Yes Yes Yes Yes Yes Yes
Block Yes Yes Yes Yes Yes Yes Yes Yes

Fit statistics
Control Mean 1 1 1 1 1 1 1 1
Observations 15,879,842 15,879,842 11,884,810 3,980,493 3,963,619 3,974,217 7,847,164 15,879,842
First Stage F-Stat 52.809 14.090 44.257 20.465 37.912 40.763 78.281 52.747

Clustered (Participant & Week of Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: This table reports IV estimates of the effect of adopting an EV tariff on electricity consumption over the whole day. The
instrument is an indicator for assignment to any email-based encouragement. Columns (1) is our main specification; (2) defines
a separate indicator for each encouragement group; (3) restricts to just the £0/Month group and the control group; (4) restricts to
just the £50/Month group and the control group; (5) just the £50/Month (No Bump) group and the control group; (6) restricts to
the 6 months after encouragement emails were sent out; (7) we do not control for baseline consumption. All specifications control
for baseline consumption (except column 6), and fixed effects for randomization block and week. Standard errors, clustered by
participant and week, are reported in parentheses. The control mean is calculated over the same time periods for control group trial
participants not enrolled in an EV tariff. The bottom row shows the first-stage Wald F-statistic.
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Table A10: Heterogeneity of IO Go Take-up, by IMD and Baseline Electricity
Consumption

x IMD x Baseline kWh
Model: (1) (2)

Variables
Email + £0/Mth × Tercile 1 0.021 0.029∗∗∗

(0.018) (0.010)
Email + £0/Mth × Tercile 2 0.045∗∗∗ 0.050∗∗∗

(0.009) (0.009)
Email + £0/Mth × Tercile 3 0.026∗∗∗ 0.016∗

(0.007) (0.009)
Email + £5/Mth × Tercile 1 0.001 0.035∗∗

(0.026) (0.016)
Email + £5/Mth × Tercile 2 0.052∗∗∗ 0.033∗∗

(0.017) (0.015)
Email + £5/Mth × Tercile 3 0.022∗ 0.019

(0.011) (0.015)
Email + £50/Mth × Tercile 1 0.009 0.069∗∗∗

(0.031) (0.018)
Email + £50/Mth × Tercile 2 0.062∗∗∗ 0.064∗∗∗

(0.018) (0.017)
Email + £50/Mth × Tercile 3 0.059∗∗∗ 0.036∗∗

(0.013) (0.016)
Email + £50/Mth (No Bump) × Tercile 1 0.050 0.080∗∗∗

(0.033) (0.019)
Email + £50/Mth (No Bump) × Tercile 2 0.062∗∗∗ 0.045∗∗∗

(0.017) (0.016)
Email + £50/Mth (No Bump) × Tercile 3 0.035∗∗∗ 0.009

(0.012) (0.015)
Tercile 2 -0.009 -0.013

(0.017) (0.012)
Tercile 3 0.010 -0.0005

(0.017) (0.013)

Fixed-effects
Block Yes Yes
Week of Year Yes Yes

Fit statistics
Observations 15,879,842 15,879,842

Clustered (Participant & Week of Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: This table presents heterogeneity in impact of encouragements
on take-up of IO Go, interacting encouragement group with (1) Index
of Multiple Deprivation (IMD) terciles and (2) baseline consumption
terciles. The outcome is a binary indicator for weekly use of the Octo-
pus Go tariff. The specification controls for baseline consumption, and
fixed effects of randomization block and week of year. Standard errors,
clustered by participant week, are reported in parentheses.
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Table A11: Heterogeneity of Impact of EV Tariffs, by IMD and Baseline Electricity
Consumption

x IMD x Baseline kWh
Off-Peak Peak Off-Peak Peak

Model: (1) (2) (3) (4)

Variables
(EV Tariff) x (Tercile 1) 0.924 1.16 0.295 -0.300

(0.960) (1.08) (0.291) (0.221)
(EV Tariff) x (Tercile 2) 0.604 -0.882∗∗ 0.504 -0.399

(0.388) (0.383) (0.316) (0.277)
(EV Tariff) x (Tercile 3) 0.508∗ -0.207 0.998 -0.759

(0.297) (0.269) (0.778) (0.725)
(Other Tariff) x (Tercile 2) 0.078 0.327∗∗ 0.059 0.182∗∗∗

(0.127) (0.140) (0.072) (0.060)
(Other Tariff) x (Tercile 3) 0.098 0.218 0.131 0.441∗∗∗

(0.127) (0.138) (0.134) (0.125)

Fixed-effects
Block Yes Yes Yes Yes
Week of Year Yes Yes Yes Yes

Fit statistics
Observations 3,970,004 2,646,712 3,970,004 2,646,712

Clustered (Participant & Week of Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: This table presents heterogeneity in IV effects of EV tariff adop-
tion on hourly electricity consumption during off-peak (23:30-5:30) and
peak (16:30-20:30) periods, interacting EV tariff adoption with (1) Index
of Multiple Deprivation (IMD) terciles and (2) baseline consumption ter-
ciles. All specifications control for baseline consumption, and fixed ef-
fects for randomization block and week. Standard errors, clustered by
participant and week, are reported in parentheses.
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Table A12: Bump Charging and Baseline Characteristics

Dependent Variable: I(Ever Bumped)
Model: (1)

Variables
Constant 0.385∗∗∗

(0.050)
ZEmail+£0/Mth 0.004

(0.032)
ZEmail+£5/Mth -0.063

(0.047)
ZEmail+£50/Mth -0.002

(0.045)
ZEmail+£50/Mth(NoBump) -0.002

(0.046)
Frac. of kWh During Peak (Z-Score) 0.039∗∗∗

(0.012)
Total Consumption (Z-Score) -0.006

(0.015)
Structural Winnings (Z-Score) 0.005

(0.016)
IMD Tercile 2 0.029

(0.043)
IMD Tercile 3 0.052

(0.041)
Octopus Tenure (Years) 0.007

(0.007)
I(Baseline TOU) 0.078∗∗

(0.033)

Fit statistics
Observations 2,146
Dependent variable mean 0.45573

IID standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: This table reports regression results where
the dependent variable is an indicator for whether
a participant has ever engaged in bump charging.
Explanatory variables include the encouragement
group assignment and baseline characteristics. De-
tailed definitions of these baseline characteristics can
be found in Appendix A.4.2.
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Table A13: Baseline Differences Between IO Go and Octopus Go Trial Participants

Variable IO Go Mean Octopus Go Mean IO Go - Octopus Go p-value

Octopus Tenure 2.51 2.58 -0.06 0.34
[1.65] [1.64]

Total kWh 3912.32 3753.20 159.12 0.076*
[2343.05] [2174.77]

Total kWh Stdev 0.77 0.77 0.00 0.74
[0.24] [0.22]

Not Always Octopus Customer 0.24 0.24 0.00 0.95
[0.43] [0.43]

Smart Tariff Onboarding Processes 0.34 0.26 0.08 0.00025***
[0.58] [0.51]

Structural Winnings (GBP/kWh) 687.70 684.59 3.11 0.9
[630.75] [592.95]

Proportion Total kWh Peak 0.22 0.23 -0.01 0.057*
[0.08] [0.08]

Note: Column (1) shows the mean and [standard deviation] for IO Go users; column (2) reports the same
for Octopus Go participants; column (3) shows the difference in means between columns (1) and (2);
column (4) reports the p-value from a two-sided t-test of equality of means. Detailed definitions of these
covariates can be found in Appendix A.4.2.
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A.2 Figures

Figure A1: Tariff Rates in 2024
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Notes: Panel (a) shows the tariff rates for Intelligent Octopus Go customers during the off-peak overnight period
(23:30–05:30, dark purple) and the peak daytime period (05:30–23:30, light purple). For comparison, we also in-
clude the Flexible Octopus tariff from Octopus Energy, which maintains a flat rate throughout the day. Panel (b) shows
analogous tariff rates for Octopus Go’s off-peak overnight period (00:30-5:30) and peak daytime period (5:30-00:30).
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Figure A2: Distribution of Baseline Covariates Across Encouragement Arms
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Notes: This figure plots kernel density estimates of baseline covariates across encouragement arms. The similarity of
these distributions illustrates that block randomization achieved good covariate balance across arms, consistent with
the regression-based balance tests reported in Table A1. Note that the variable ‘Not Always Octopus Customer‘ has
been excluded, as it is a binary variable that is unsuitable for a density plot. Detailed definitions of these covariates
can be found in Appendix A.4.2.
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Figure A3: Take-up of EV Tariffs Over Time by Trial Arms
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Notes: This figure plots the fraction of trial participants in each trial group that has taken up an EV tariff. The left panel
shows take-up of the AI managed charging tariff, IO Go, which combines static time-of-use pricing with remote control
of EV charging. The right panel shows take-up of either IO Go or Octopus Go, the latter being a static time-of-use tariff
without supplier control.
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Figure A4: Probability of First-Ever Opening Emailed Encouragement
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Notes: This figure plots the cumulative proportion of customers who first opened an encouragement email over time.
Solid lines show Kaplan–Meier survival estimates of the probability of not yet opening, with shaded areas denoting
95% confidence intervals. Time is measured from the date of the encouragement email until the first observed open.

Figure A5: Completion Rate for Participants Signing Up for IO Go
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Notes: This figure shows the percentage of participants who, after attempting to sign up for IO Go during the incentive
period, successfully completed the onboarding process. Completino of onboarding includes testing the compatibility
of their vehicle or charger with the IO Go app.
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Figure A6: Heterogeneity by Index of Multiple Deprivation
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Notes: This figure presents heterogeneity in treatment effects by Index of Multiple Deprivation (IMD) terciles. Panel A
shows the effect of each encouragement group on take-up of IO Go, interacting encouragement with deprivation tercile
(T1: most deprived); regression results are also presented in Table A10. Panel B displays the estimated IV effects of
EV tariff adoption on hourly electricity consumption during off-peak (23:30-5:30, green) and peak (16:30-20:30, blue)
periods, again interacting EV tariff adoption with deprivation tercile; regression results are also presented in Table A11.
Panel C shows the proportion of trial participants in the experimental sample in each tercile. Confidence intervals are
shown at the 95% level. All specifications control for baseline consumption, and fixed effects for randomization block
and week. Lines depict 90% (dark) and 95% (light) confidence intervals. Standard errors are clustered by participant
and week.
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Figure A7: Heterogeneity by Baseline Electricity Consumption
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Notes: This figure presents heterogeneity in treatment effects by baseline total consumption (kWh). Panel A shows
the effect of each encouragement group on take-up of IO Go, interacting encouragement with deprivation tercile (T1:
lowest consumption); regression results are also presented in Table A10. Panel B displays the estimated IV effects of
EV tariff adoption on hourly electricity consumption during off-peak (23:30-5:30, green) and peak (16:30–20:30, blue)
periods, again interacting EV tariff adoption with baseline consumption tercile; regression results are also presented
in Table A11. Panel C shows mean hourly consumption for each tercile, with 95% standard error bars. Confidence
intervals are shown at the 95% level. All specifications control for baseline consumption, and fixed effects for random-
ization block and week. Lines depict 90% (dark) and 95% (light) confidence intervals. Standard errors are clustered by
participant and week.

Figure A8: Participant Preferences and Behaviors
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Notes: This figure summarizes IO Go customer preferences and behavioral patterns. Panel (a) shows the joint distribu-
tion of customer-selected end state of charge and charge completion time, as specified via the Octopus app. Panel (b)
displays the frequency of plug-in and unplug times.
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Figure A9: Preferences for End State of Charge and Completion Time - By
Encouragement Group
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Notes: This figure shows the joint distribution of customer-selected end state of charge and charge completion time,
as specified via the Octopus app. The trial participants are split by the encouragement group they were randomly
assigned.
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Figure A10: Preferences for End State of Charge and Completion Time - By
Encouragement Group
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Notes: This figure shows the frequency of plug-in and unplug times. The results are shown separately by randomized
encouragement group.

Figure A11: Distribution of Proportion of Charge-Hours Bumped Per Customer
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Notes: This figure illustrates bump charging behavior, where trial participants manually overrode the AI managed
charging schedule. The horizontal axis shows, for each customer, what share of their total charge-hours was “bumped"
(overridden). The vertical axis shows the cumulative proportion of customers. Charge-hours here are hours where any
charging occurs.
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Figure A12: Bump Charge Behaviors - By Encouragement Group
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Notes: This figure illustrates bump charging behavior, where trial participants manually overrode the AI managed
charging schedule. Results are shown separately by randomized encouragement group. The left panel shows the
proportion of trial participants who never used bump charging. The right panel shows the share of total electricity
consumption that came from bump charging.

Figure A13: Difference-in-Differences Estimate of IO Go, by Hour-of-day
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Notes: This figure reports effect of adopting the IO Go tariff on hourly electricity consumption (in kWh), split by hour
of the day. These are estimated using a sample of 9,317 customers who first-ever enrolled in IO Go in 2024, weighted by
whether the customer was previously on a time-of-use tariff. Estimates are computed using the Callaway and Sant’Anna
(2021) estimator. Confidence intervals are shown at the 95% level.
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Figure A14: Cohort Specific Difference-in-Differences Estimate of IO Go
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Notes: This figure reports cohort-specific estimates of the effect of adopting the IO Go tariff on hourly electricity con-
sumption (in kWh) during (a) peak hours (16:30-20:30) and (b) off-peak hours (23:30-5:30). These are estimated using
a sample of 9,317 customers who first-ever enrolled in IO Go in 2024, weighted by whether the customer was previ-
ously on a time-of-use tariff. Estimates are computed using the Callaway and Sant’Anna (2021) estimator. Confidence
intervals are shown at the 95% level.
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Figure A15: Marginal value of public funds of subsidizing AI managed charging
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(a) 1 year, 2024
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(b) 5 years, 2024-2028

Notes: This figure presents the estimated costs and benefits of subsidizing adoption of the IO Go managed EV charging
tariff over the course of (a) 1 year, and (b) 5 years. Customer surplus is based on a decomposition of marginal and
inframarginal adoption under the £50/month offer, following the approach of Hendren and Sprung-Keyser (2020).
Direct CO2e benefits reflect emissions reductions from shifting electricity use to cleaner hours, scaled to marginal
adopters. Indirect CO2e benefits are excluded under the assumption that managed charging subsidies do not affect
EV uptake among inframarginal adopters. Estimated costs to government include the subsidy, lost VAT revenue, and
increased tax receipts from climate-related fiscal externalities. Grid stabilization benefits are shown separately, based
on Franken et al. (2025) estimates of per-vehicle system savings under three scenarios. Only a share of these may accrue
to government.

84



Figure A16: Marginal value of public funds of subsidizing AI managed charging,
Alternative SCC
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(a) 10 years, SCC from Bilal and Känzig (2024)
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(b) 10 years, SCC from Interagency Working Group

Notes: This figure presents the estimated costs and benefits of subsidizing adoption of the IO Go managed EV charging
tariff over the course of 10 years. Panel (a) uses the SCC estimate from Bilal and Känzig (2024); panel (b) uses the SCC
estimate from Interagency Working Group on Social Cost of Greenhouse Gases, United States Government. Customer
surplus is based on a decomposition of marginal and inframarginal adoption under the £50/month offer, following
the approach of Hendren and Sprung-Keyser (2020). Direct CO2e benefits reflect emissions reductions from shifting
electricity use to cleaner hours, scaled to marginal adopters. Indirect CO2e benefits are excluded under the assumption
that managed charging subsidies do not affect EV uptake among inframarginal adopters. Estimated costs to govern-
ment include the subsidy, lost VAT revenue, and increased tax receipts from climate-related fiscal externalities. Grid
stabilization benefits are shown separately, based on Franken et al. (2025) estimates of per-vehicle system savings un-
der three scenarios. Only a share of these may accrue to government.
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Figure A17: Institutional Features of IO Go Across Difference Countries

Figure A18: Estimated Impact of IO GO, by “Bump" (Override) Behavior

Notes: This figure reports staggered difference-in-differences estimates of the effect of adopting the IO Go tariff on
hourly electricity consumption, for participants who were a part of our experiment. We report separate estimates for
customers who (i) have “bumped", or overridden the supplier managed schedule, and (2) who have never bumped.
Estimates are also separately estimated by peak (16:30-20:30) and off-peak hours (23:30-5:30). Estimates are computed
using the Callaway and Sant’Anna (2021) estimator. Error bars represent the 95% confidence interval.
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Figure A19: Estimated Impact of IO GO, by User Preferences

Notes: This figure reports staggered difference-in-differences estimates of the effect of adopting the IO Go tariff on
hourly electricity consumption, for participants who were a part of our experiment. We report separate estimates
for customers by their settings for when they need the car ready and how much charge is needed: (1) default or less
ambitious - 8:00 a.m. ready-by time and 80% charge, or later/lower, (2) ambitious — either an earlier ready-by time
or higher charge, and (3) most ambitious — both earlier and higher charge. Estimates are also separately estimated by
peak (16:30-20:30) and off-peak hours (23:30-5:30). Estimates are computed using the Callaway and Sant’Anna (2021)
estimator. Error bars represent the 95% confidence interval.
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A.3 Deviations from the Pre-Analysis Plan

This experiment was pre-registered with the American Economic Association (AEA)

under Trial No. 0013037. While we aimed to follow the pre-analysis plan (PAP) as closely

as possible, a number of deviations became necessary in the course of implementation

and analysis. Below, we detail the key departures from the PAP. Where applicable, corre-

sponding changes to regression specifications are noted via footnotes in the main text.

• Data: Originally, our consumption data was to be aggregated on the hour (e.g.,

00:00, 01:00, etc.). However, IO Go tariff rates begin on the half-hour (e.g., 23:30

rather than 00:00), we adjusted our data aggregation accordingly. All half-hourly

data was therefore aligned to begin on the half-hour mark.

• Data: We had pre-specified that electricity consumption data would be aggregated

to the hour-day level. However, due to computational constraints in processing and

analyzing high-frequency data, we instead aggregated consumption to the week ×
hour-of-day level.

• Data: We included 12 months of post-encouragement data, rather than the 6 months

originally proposed, as we initiated our analysis later than anticipated and took ad-

vantage of the longer available data window. This change in data window does not

substantively change our results, as shown in column (7) of Table A7, Table A8, and

Table A9.

• Analysis: To improve precision and account for pre-existing consumption patterns,

we included a control for baseline average hourly electricity consumption in our

regression models. This adjustment was not pre-specified, but we show the version

of the regression that does not include baseline consumption in column (8) of Ta-

ble A7, Table A8, and Table A9. Coefficients for the peak consumption and overall

consumption are similar, while the coefficient for the off-peak consumption changes

from 0.515 (main specification) to 0.164 (no baseline consumption). We view this

more as a loss of precision than of a substantive change in the underlying effect.

As can be seen in Column (8), without baseline consumption as a control, the esti-

mates become extremely noisy, and are statistically indistinguishable from the main

specification.

• Analysis: Our pre-specified IV analysis planned to use the randomized encourage-

ments as instruments for just IO Go adoption. However, given that the randomized
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encouragements increased enrollment in both Intelligent Octopus Go and Octopus

Go, we defined treatment as adoption of either EV tariff, rather than IO Go alone.

This adjustment was necessary to preserve the exclusion restriction in our instru-

mental variables analysis, a requirement we did not know would be necessary at the

outset of the trial.

• Analysis: Following the concerns raised in Mogstad et al. (2021) regarding the in-

terpretation of IV estimates with multiple instruments, we use a single binary in-

strument combining all encouragement groups. This approach helps avoid com-

plications such as negative weights and improves interpretability under a common

first-stage assumption. We report results from our pre-specified analysis using the

four instruments separately in Figure 6, Table A7, Table A8, and Table A9. These in-

clude both the joint specification with all four instruments and separate regressions

where each encouragement serves as an instrument individually.

• Analysis: Our pre-specified DiD sample included all customers who adopted IO

Go in 2023. In the final analysis, our DiD analysis restricted the sample to cus-

tomers who likely owned an EV by December 2022. This was to ensure that ob-

served changes in consumption patterns are due to changes in charging behavior,

rather than the initial uptake of EVs. We also re-weighted this restricted DiD sam-

ple by pre-adoption tariff to better understand the extent to which differences be-

tween RCT and DiD were due to pre-adoption tariff (this re-weighting was not pre-

specified).

• Analysis: For our DID analysis, we prespecified restricting control cohorts to cus-

tomers who adopt IO GO within 30 days. However, our final analysis used an eight-

week window. This was to balance comparability of treated and control groups

against the length of the post-adoption estimation horizon. Comparability was as-

sessed by examining pre-treatment trends, and we selected the longest horizon that

yielded satisfactory pre-trend balance.

• Welfare: In keeping with the pre-analysis plan, we used the £150 incentive as a

proxy subsidy, with J-PAL as proxy government. However, we refined our welfare

analysis to better capture the long-term and system-wide implications of the inter-

vention. To this end, we looked at CO2e impacts over a 10-year time period; exam-

ined how the MVPF would change when we included avoided grid balancing costs;

and included lost VAT as an extra cost to the government of the subsidy. While these

89



additions increase the measured benefits, we believe they more accurately reflect

the full set of social returns that would accrue under real-world implementation. In

keeping with the pre-analysis plan, we assumed that trial participants who enrolled

in response to the £0/month email reflected inframarginal participants, while the

incremental take-up in the £50/month group represented marginal adopters with

an average willingness to pay equal to 50% of the subsidy, consistent with standard

MVPF assumptions.

• Welfare: We originally pre-specified estimating CO2e impacts using the ITT frame-

work. We did not pre-specify the use of IV estimation for bills or CO2e savings. We

adopt the IV approach here because it more directly captures the causal effect of

IO Go adoption—the quantity of substantive interest. While our pre-analysis plan

focused on MVPF calculations rather than consumer bills, we now report bill sav-

ings as well, as they provide an important and policy-relevant measure of consumer

benefits.
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A.4 Additional details on design of field trial

A.4.1 Reproduction of email-based encouragements

Hi [%first_name | there%],
 
My name is Alex, and I look after all things related to EV charging at Octopus. I noticed your home’s 
energy patterns look uncannily like that of a typical electric car owner. So, it got me wondering, do 
you drive an Electric Vehicle?
 
If you do have an Electric Vehicle, Intelligent Octopus Go could save you up to £700 a year. 
 

Switch to Intelligent Octopus Go

About Intelligent Octopus Go
 
Designed to help you save, Intelligent Octopus Go is the UK’s most popular EV tariff and it works with 
more than 280 electric car models and chargers. And, when you sign up to Intelligent Octopus Go, 
you get the following benefits:

Potential savings of up to £700 a year via smart charging at a super low rate alongside six 
hours of cheap energy for your entire home every night. 

Hassle-free automatic charging of your EV at home - let us know via the Octopus app 
when you need your car charged and by how much and we’ll handle the rest, scheduling your 
charger to refuel your car at the cheapest, greenest times. 

8% off on-the-go charging via Electroverse - charge on the road with one of the more than 
600,000 public Electroverse chargers.

Have other low-carbon tech too? If you have solar panels or battery storage, you can 
combine Intelligent Octopus Go with our smart export tariff Outgoing Octopus to save even 
more.

If you’re not happy, you can leave Intelligent Octopus Go at any time with no penalty. 

Switch to Intelligent Octopus Go

If we’re wrong about you having an electric vehicle, but you do have some other energy-intensive 
tech like a heat pump or home battery, tell us about it here to check if you’re eligible for one of our 
other smart tariffs. We’re constantly working on cutting-edge solutions to help you save while 
integrating with the grid of the future. So, if you've got some other tech that could benefit from a smart 
tariff, let us know. 
 
Any questions? Just reply to this email.
 
Love and Power,
 
Alex Schoch

 

Unsubscribe - Unsubscribe PreferencesFigure A20: Randomized Encouragement Group 1 (Email + £0/Mth)

Note: The subject line read FYI: Do you drive an EV? You could save hundreds on your energy bills.
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Hi [%first_name | there%],
 
My name is Alex, and I look after all things related to EV charging at Octopus. I noticed your home’s 
energy patterns look uncannily like that of a typical electric car owner. So, it got me wondering, do 
you drive an electric vehicle?
 
If you do have an electric vehicle, Intelligent Octopus Go could save you up to £700 a year. Plus, if 
you switch in March, we will pay you up to £15 over April, May and June for each day you stay on 
Intelligent Octopus Go. This offer is valid for the next 11 days - through March 31. 
 
 

Switch to Intelligent Octopus Go

About Intelligent Octopus Go
 
Designed to help you save, Intelligent Octopus Go is the UK’s most popular EV tariff and it works 
with more than 280 electric car models and chargers. And, when you sign up to Intelligent 
Octopus Go, you get the following benefits:

We will pay you up to £5 per month during April, May and June for being on Intelligent
Octopus Go.
 
Potential savings of up to £700 a year via smart charging at a super low rate alongside
six hours of cheap energy for your entire home every night. 
 
Hassle-free automatic charging of your EV at home - let us know via the Octopus app
when you need your car charged and by how much and we’ll handle the rest, scheduling
your charger to refuel your car at the cheapest, greenest times. 
 
8% off on-the-go charging via Electroverse - charge on the road with one of the more
than 600,000 public Electroverse chargers.
 
Have other low-carbon tech too? If you have solar panels or battery storage, you can
combine Intelligent Octopus Go with our smart export tariff Outgoing Octopus to save
even more.
 
If you’re not happy, you can leave Intelligent Octopus Go at any time with no penalty.

Switch to Intelligent Octopus Go

If we’re wrong about you having an electric vehicle, but you do have some other energy-intensive 
tech like a heat pump or home battery, tell us about it here to check if you’re eligible for one of our 
other smart tariffs. We’re constantly working on cutting-edge solutions to help you save while 
integrating with the grid of the future. So, if you've got some other tech that could benefit from a smart 
tariff, let us know. 
 
Any questions? Just reply to this email.
 
Love and Power,
 
Alex Schoch

 

Unsubscribe - Unsubscribe PreferencesFigure A21: Randomized Encouragement Group 2 (Email + £5/Mth)

Note: The subject line read FYI: Do you drive an EV? You could save hundreds on your energy bills and get paid £15.
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Hi [%first_name | there%],
 
My name is Alex, and I look after all things related to EV charging at Octopus. I noticed your home’s 
energy patterns look uncannily like that of a typical electric car owner. So, it got me wondering, do 
you drive an electric vehicle?
 
If you do have an electric vehicle, Intelligent Octopus Go could save you up to £700 a year. Plus, if 
you switch in March, we will pay you up to £150 over April, May and June for each day you stay on 
Intelligent Octopus Go. This offer is valid for the next 11 days - through March 31.
 
 

Switch to Intelligent Octopus Go

About Intelligent Octopus Go
 
Designed to help you save, Intelligent Octopus Go is the UK’s most popular EV tariff and it works 
with more than 280 electric car models and chargers. And, when you sign up to Intelligent 
Octopus Go, you get the following benefits:

We will pay you up to £50 per month during April, May and June for being on Intelligent
Octopus Go.
 
Potential savings of up to £700 a year via smart charging at a super low rate alongside
six hours of cheap energy for your entire home every night. 
 
Hassle-free automatic charging of your EV at home - let us know via the Octopus app
when you need your car charged and by how much and we’ll handle the rest, scheduling
your charger to refuel your car at the cheapest, greenest times. 
 
8% off on-the-go charging via Electroverse - charge on the road with one of the more
than 600,000 public Electroverse chargers.
 
Have other low-carbon tech too? If you have solar panels or battery storage, you can
combine Intelligent Octopus Go with our smart export tariff Outgoing Octopus to save
even more.
 
If you’re not happy, you can leave Intelligent Octopus Go at any time with no penalty.

Switch to Intelligent Octopus Go

If we’re wrong about you having an electric vehicle, but you do have some other energy-intensive 
tech like a heat pump or home battery, tell us about it here to check if you’re eligible for one of our 
other smart tariffs. We’re constantly working on cutting-edge solutions to help you save while 
integrating with the grid of the future. So, if you've got some other tech that could benefit from a smart 
tariff, let us know. 
 
Any questions? Just reply to this email.
 
Love and Power,
 
Alex Schoch

 

Unsubscribe - Unsubscribe PreferencesFigure A22: Randomized Encouragement Group 3 (Email + £50/Mth)

Note: The subject line read FYI: Do you drive an EV? You could save hundreds on your energy bills and get paid £150.
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Hi [%first_name | there%],
 
My name is Alex, and I look after all things related to EV charging at Octopus. I noticed your home’s 
energy patterns look uncannily like that of a typical electric car owner. So, it got me wondering, do 
you drive an electric vehicle?
 
If you do have an electric vehicle, Intelligent Octopus Go could save you up to £700 a year. Plus, if 
you switch in February, we will pay you up to £150 over March, April, and May for each day you 
stay on Intelligent Octopus Go. This offer is valid for the next 14 days – through Feb 29. 
 
 

Switch to Intelligent Octopus Go

About Intelligent Octopus Go
 
Designed to help you save, Intelligent Octopus Go is the UK’s most popular EV tariff and it works 
with more than 280 electric car models and chargers. And, when you sign up to Intelligent 
Octopus Go, you get the following benefits:

We will pay you up to £50 per month during March, April, and May for being on Intelligent 

Octopus Go minus £2.00 for each day that you “bump charge” by using the Octopus app to 

instantly charge your EV or otherwise suspend automated charging with Intelligent Octopus 

Go.

 
Potential savings of up to £700 a year via smart charging at a super low rate alongside 
six hours of cheap energy for your entire home every night. 
 
Hassle-free automatic charging of your EV at home - let us know via the Octopus app 
when you need your car charged and by how much and we’ll handle the rest, scheduling 
your charger to refuel your car at the cheapest, greenest times.
 
8% off on-the-go charging via Electroverse - charge on the road with one of the more 
than 600,000 public Electroverse chargers.
 
Have other low-carbon tech too? If you have solar panels or battery storage, you can 
combine Intelligent Octopus Go with our smart export tariff Outgoing Octopus to save 
even more.
 
If you’re not happy, you can leave Intelligent Octopus Go at any time with no penalty. 

Switch to Intelligent Octopus Go

If we’re wrong about you having an electric vehicle, but you do have some other energy-intensive 
tech like a heat pump or home battery, tell us about it here to check if you’re eligible for one of our 
other smart tariffs. We’re constantly working on cutting-edge solutions to help you save while 
integrating with the grid of the future. So, if you've got some other tech that could benefit from a smart 
tariff, let us know. 
 
Any questions? Just reply to this email.
 
Love and Power,
 
Alex Schoch

 

Unsubscribe - Unsubscribe PreferencesFigure A23: Randomized Encouragement Group 4 (Email + £50/Mth, No Bump)

Note: The subject line read FYI: Do you drive an EV? You could save hundreds on your energy bills and get paid £150.
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A.4.2 Block randomization implementation

We implemented block randomization on trial participant account identifiers using

Mahalanobis distance calculated over the following pre-encouragement variables:

1. Tenure with Octopus: Years since a customer’s earliest import tariff contract with

Octopus Energy (as of August 31, 2023).

2. Total Consumption (kWh): Total electricity use (kWh) from February 15 to August

31, 2023, aggregated across all half-hourly smart meter readings.

3. Consumption Variability (kWh): Standard deviation of half-hourly consumption

over the same period.

4. Not Always Octopus Energy Customer: Binary flag for whether a trial participant

originally joined Octopus via acquisition (e.g., from Bulb, Co-op) or Supplier of Last

Resort procedures.

5. Smart Tariff Onboarding Attempts: Count of historical attempts to enroll in Octo-

pus smart tariffs (e.g., Intelligent Octopus Go) prior to February 15, 2024. Includes

cases where customers initiated but did not complete the process.

6. DNO Region: Categorical variable for the customer’s Distribution Network Oper-

ator region. For accounts with multiple active meter points, we used the region

linked to the most recent tariff as of August 31, 2023.

7. Expected Structural Winnings: Estimated monetary difference between a customer’s

actual electricity cost (under observed tariff contracts) and a counterfactual IO Go

contract from February 15 to August 31, 2023. We assumed an off-peak rate of

£0.075/kWh and a peak rate of £0.30/kWh for IO Go, and ignored taxes, standing

charges, and regional price variation.

8. Peak-Hour Consumption Share: Proportion of total electricity usage (Feb–Aug 2023)

occurring during 16:00–20:00, a period of high grid constraint.

Full details of structural savings calculations and data preparation are available upon

request.
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A.5 2024 difference-in-differences

We began with a sample of 146,143 customers who adopted IO Go at some point in

2024. To isolate the effect of IO Go from other contemporaneous changes, we restricted

the sample to customers who likely already owned an electric vehicle by August 2023, us-

ing the methodology described in Section 2.1. We focus on this period because electricity-

use signatures from late summer are less likely to be confounded with those from heat

pumps, allowing us to more reliably identify EV charging behavior.

To be included, customers had to (i) have been with Octopus Energy by August 2023

and (ii) have smart-meter data available at that time. We therefore excluded 65,718 cus-

tomers who had not yet joined Octopus and 27,175 without smart-meter data. We also

removed 2,039 customers who adopted IO Go but were already part of our randomized

controlled trial. After these restrictions, our final sample consisted of 9,317 customers.60

We implemented a standard event-study difference-in-differences estimator, allowing

for staggered adoption and dynamic treatment effects, following Callaway and Sant’Anna

(2021). We made a parallel trends assumption based on “not-yet-treated" units. For each

group of units first treated in week g, and for each week t ≥ g, we defined the group-time

average treatment effect on the treated (ATT) as:

AT T (g, t) = E[Yt −Yg−5 | G = g]−E[Yt −Yg−5 |Dt = 0, G , g] (8)

where G = g denotes the cohort of units first treated at time g. We estimate both (1) ag-

gregate group-time effects, and (2) a single post-treatment estimate, constructed as the

weighted average of all group-time ATT estimates, with weights proportional to group

size. To mitigate potential bias from anticipation effects, we exclude the four weeks prior

to adoption from our estimation. Accordingly, our reference period, Yg−5, is hourly con-

sumption measured five weeks prior to the treatment.(Roth, 2024).61

Our treatment assessment therefore relied on the following parallel trends assump-

tion: absent adoption, treated and not-yet-treated households would have experienced

60This restriction was not specified in our pre-analysis plan. However, preliminary analysis revealed that failing to
condition on EV ownership would conflate the effects of tariff adoption with those of initial EV uptake, thereby biasing
our estimates of the impact of IO Go.

61We assume that once a customer first adopts IO Go, they remain “treated” in the sense that their experience
with the tariff continues to shape their behavior, even if they subsequently switch to another Octopus tariff (Callaway
and Sant’Anna, 2021). In practice, some customers do have more complex tariff histories. Under the irreversibility
assumption, their electricity consumption patterns are considered to remain influenced by IO Go from the point of
initial adoption. We view this as reasonable for two reasons: (1) 90% of customers who adopt IO Go subsequently
remain on it for the entire research period, and (2) it is plausible that IO Go induces some degree of habit formation,
both in EV charging routines and in household electricity use more broadly.
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similar trends in electricity use. We assessed the plausibility of this assumption by ex-

amining pre-treatment event-study coefficients, which showed no systematic differences

across groups.

In addition, to improve comparability with the RCT estimates and probe underlying

mechanisms, we estimated weighted versions of Equation 8, reweighting the DiD sam-

ple match the RCT sample based on pre-treatment tariff type. The RCT explicitly tried

to exclude customers with any prior smart tariff usage.62 Since smart tariffs incorpo-

rate time-of-use pricing structures, this exclusion disproportionately removed time-of-

use tariff users from the RCT sample. As a result, only 14% of RCT participants were on

a time-of-use tariff at baseline, compared to 64% in the DiD sample.63 To align the tariff
composition across the two groups, we calculated the baseline shares of standard versus

time-of-use tariff users in each sample. We then reweighted the DiD observations by the

ratio of RCT to DiD shares, ensuring that the reweighted DiD sample better reflected the

RCT’s pre-treatment tariff distribution. 64

A.6 Difference-in-differences results

Figure A24 shows that the difference-in-differences estimates are notably smaller than

those from the RCT. In the unweighted specification (Column 1), IO Go adoption is as-

sociated with a 0.103 kWh (11%) average hourly reduction in peak-period consumption,

and a 0.28 kWh (18%) increase during off-peak hours. In contrast, the RCT estimates

imply much larger shifts: a 0.581 kWh (42%) decrease during peak periods and a 0.481

kWh (50%) increase off-peak.

This discrepancy appears to be largely explained by differences in baseline time-of-use

tariff usage. Column 2 presents the results after reweighting the DiD sample to match

the RCT sample’s pre-treatment tariff distribution. After reweighting, the estimated in-

crease in off-peak consumption in the DiD analysis (0.562 kWh) is similar to the RCT

62This exclusion was not perfect; a small number of customers who previously had smart tariffs were part of our trial
sample. Smart tariffs are tariffs that require smart meters because their half-hourly unit rate changes.

63For historical reasons, there are a handful of time-of-use tariffs that are not “smart” tariffs; the most well-known
of which is called “Economy 7”, a tariff introduced in the 1970s to incentivize overnight electricity use, particularly for
storage heaters by offering cheaper rates during a fixed seven-hour off-peak window. In recent years, some EV owners
also adopted Economy 7 as a way to charge their vehicles at lower cost.

64We also implemented propensity-score reweighting. Specifically, we estimated the probability of being in the RCT
(vs. DiD) sample using a logit regression with the following covariates: (1) tariff type prior to treatment, (2) total
electricity consumption in December before the study period (December 2023 for DiD, December 2024 for RCT), (3)
the share of consumption occurring during peak hours, (4) Octopus tenure, (5) IMD rank, and (6) property value. The
resulting propensity scores were then used as weights in the DiD regression. However, we found that only the pre-
treatment time-of-use tariff indicator had a substantive effect on the results. Given this, we opted to show the results
only of the simpler tariff-based reweighting approach described in the main text.

97



analysis (0.481 kWh). The reduction in peak consumption is considerably smaller in the

DiD analysis: 0.291 kWh compared to 0.581 kWh in the RCT. This weaker peak effect is

compensated for by a decline in daytime, non-peak consumption in the DiD sample, as

shown in Figure A13. This suggests that unobservable factors—such as higher ownership

of flexible technologies like heat pumps, air conditioners, or smart thermostats—may

allow DiD households to shift more of their daytime demand.

Thus the RCT targeted a sample whose characteristics made their baseline consump-

tion less aligned with IO Go’s optimization – i.e., because their charging behavior was

not previously responding to dynamic or off-peak pricing, leaving more scope for man-

aged charging to change consumption in both peak and off-peak hours. We also estimate

cohort-specific treatment effects, defining cohorts by the week of adoption as shown in

Figure A14; we find that treatment effects are relatively homogeneous across cohorts.

Taken together, this homogeneity in treatment effects across cohorts, combined with

the close alignment of RCT and reweighted DiD estimates, suggests that the impact of

IO Go is relatively stable across adopters. The primary source of variation appears to

be baseline charging behavior, particularly whether customers were already on time-of-

use tariffs prior to adoption, rather than any inherent heterogeneity in responsiveness to

managed charging.

A.7 Theoretical Model

A.7.1 Environment and Notation

Time is divided into settlement periods h = 1, . . . ,H . Each EV-owning household i

requires Ei kWh by ready-by time Ti , has plug-in availability Ai ⊆ {1, . . . ,H}, maximum

charge rate x̄i , and charging efficiency ηih. Baseline (non-EV) load is bih, with aggregate

bh ≡
∑
i bih. Total system load is

Qh = bh +
∑
i

xih.

Retailer costs are ch(Qh) (convex) and ancillary/avoided benefits rh(Qh) (concave). De-

fine the system shadow price

c̃h = c′h(Qh)− r
′
h(Qh), (9)
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Figure A24: Difference-in-Differences Estimate of IO Go
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Notes: This figure reports staggered difference-in-differences estimates of the effect of adopting the IO Go tariff on
hourly electricity consumption (in kWh) during (a) peak hours (16:30–20:30) and (b) off-peak hours (23:30–05:30),
using a sample of 9,317 customers who first-ever enrolled in IO Go in 2024. Each panel plots treatment effects relative
to the week before adoption. Estimates are reported under two specifications: (i) unweighted; (ii) and weighted by
whether the trial participant was previously on a time-of-use tariff. Estimates are computed using the Callaway and
Sant’Anna (2021) estimator. Percentages represent post-treatment effects as share of the pre-IO Go consumption levels.
Post-treatment effects are estimated using average of all group-time average treatment effects, with weights propor-
tional to the group size.

as in convex scheduling (Boyd and Vandenberghe, 2004; Joskow and Tirole, 2006b). House-

holds derive mobility utility Ui(Ei) (increasing, concave) and timing disutility ψi(h) ≥ 0.

Under RTP, they face attention/optimization cost ai ≥ 0 and risk penalty γi ≥ 0 on bill

variance (Borenstein, 2007). Under IO (AI scheduling), they can override at a hassle cost

φi ≥ 0.

We compare four tariffs:65

65Our framework builds on Joskow and Tirole (2006b), who study the welfare properties of RTP under convex
scheduling. Their analysis contrasts RTP with the absence of RTP. Where we depart is in the introduction of (i) al-
gorithmic intermediation (IO) as a distinct pricing/coordination regime, and (ii) frictions such as override behavior,
execution costs (mih,φi ), and aggregate override thresholds (β̄⋆ ). These extensions allow us to bring the theoretical
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1. Flat: price pflat.

2. ToU: ppeak > poff across fixed windows.

3. RTP: hourly pRTP
h ; households self-schedule.

4. IO (AI managed): centralized schedule {xih} against {c̃h}; users may override.

The feasible EV-charging schedules satisfy66

∑
h≤Ti ,h∈Ai

ηihxih ≥ Ei , 0 ≤ xih ≤ x̄i . (10)

Elasticity by operative signal. Letπkh be the operative signal under regime k ∈ {IO,RTP,ToU}
with πIO

h = c̃h, π
RTP
h = pRTP

h , πToU
h = pToU

h . Define

ϵkh =
∂ lnQkh
∂ lnπkh

, (11)

evaluated in high plug-in hours (Qkh > 0). Let eh denote marginal CO2 emissions (kg/kWh).

A.7.2 Household and Aggregator Problems

RTP household problem. A household chooses {xih} to minimize expected cost plus

frictions:

min
{xih}

E

[∑
h

pRTP
h xih

]
+γi Var

(∑
h

pRTP
h xih

)
+
∑
h

ψi(h)xih + ai · 1{actively scheduling}

(12)

s.t.
∑

h≤Ti ,h∈Ai

ηihxih ≥ Ei , 0 ≤ xih ≤ x̄i .

At interior hours, first-order conditions (FOC) take the (mean–variance) form

E[pRTP
h ] + 2γi

(
pRTP
h ,

∑
ℓ

pRTP
ℓ xiℓ

)
+ψi(h) = µiηih, (13)

framework into closer alignment with experimental data, in particular by capturing behavioral deviations from the
frictionless convex scheduling benchmark.

66We model EV-only RTP for comparability to IO (which optimizes EV load). If non-EV end uses are price-responsive
under whole-household RTP, the welfare gap ∆W0 generalizes accordingly; our empirical mapping focuses on the EV
subproblem.
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with µi ≥ 0 the KKT multiplier on the energy requirement. The attention cost ai > 0

drives corner solutions by discouraging small reallocations.67

IO aggregator problem. The IO scheduler minimizes social cost plus timing disutility:

min
{xih}

∑
h

[
ch(Qh)− rh(Qh)

]
+

∑
i,h

ψi(h)xih (14)

s.t.
∑

h≤Ti ,h∈Ai

ηihxih ≥ Ei , 0 ≤ xih ≤ x̄i .

The objective is convex and the constraints are affine; under Slater’s condition (capacity

slack), KKT are necessary and sufficient (Boyd and Vandenberghe, 2004).

A.7.3 Core Lemmas and Propositions

Standing assumptions for this subsection. (i) ch(·) convex, rh(·) concave, so c̃h is non-

decreasing in Qh; (ii) price-taking (a single household does not affect c̃h); (iii) Slater’s

condition holds for Eq. (14)–Eq. (10) (there exists feasible slack).

Lemma A.7.1 (Peak shaving under IO (merit-order via KKT)). Under assumptions (i)–(iii),

67Derivation of (13): Rewrite the energy requirement as a KKT-friendly inequality gi (x) ≡ Ei −
∑
h≤Ti ,h∈Ai ηihxih ≤ 0

with multiplier µi ≥ 0. Let Si (x,p) ≡
∑
h p

RTP
h xih be the (random) daily bill. Ignoring the fixed attention cost ai (which

does not depend on {xih} and thus only affects the extensive/corner decision), the Lagrangian is

L = E[Si ] + γi Var(Si ) +
∑
h

ψi (h)xih + µi

Ei −
∑
h≤Ti
h∈Ai

ηihxih

 +
∑
h

αih(xih − x̄i ) −
∑
h

βihxih,

with box-constraint multipliers αih,βih ≥ 0. Since prices are exogenous to the household, ∂
∂xih

E[Si ] = E[pRTP
h ] and

∂
∂xih

Var(Si ) = 2
(
pRTP
h ,Si

)
because Var(Si ) = E

[
(Si −E[Si ])2

]
⇒ ∂Var(Si )/∂xih = 2E

[
(Si −E[Si ])(p

RTP
h −E[pRTP

h ])
]
. Sta-

tionarity w.r.t. xih gives

E[pRTP
h ] + 2γi

(
pRTP
h ,

∑
ℓ

pRTP
ℓ xiℓ

)
+ ψi (h) − µiηih + αih − βih = 0.

At interior hours (0 < xih < x̄i ), αih = βih = 0, yielding

E[pRTP
h ] + 2γi

(
pRTP
h ,

∑
ℓ

pRTP
ℓ xiℓ

)
+ ψi (h) = µi ηih,

which is (13). Complementary slackness for αih,βih covers corner hours.
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define the adjusted hourly cost

κih ≡
c̃h +ψi(h)

ηih
.

(a) For each i, an IO optimum allocates charging to hours with the lowest available κih subject

to Eq. (10). (b) If there exist feasible peak and off-peak hours p,o with κip > κio, then xip > 0

implies all lower-cost hours {o : κio < κip} are saturated or infeasible. Aggregating over i,

IO (weakly) lowers peak load and (weakly) raises off-peak load while daily kWh per EV is

unchanged.

Proof. Let Qh = bh +
∑
i xih. The Lagrangian is

L({xih}, {µi}, {µ±ih}) =
∑
h

[
ch(Qh)− rh(Qh)

]
+
∑
i,h

ψi(h)xih

+
∑
i

µi

Ei −
∑
h≤Ti
h∈Ai

ηihxih

+
∑
i,h

µ+
ih(xih − x̄i)−

∑
i,h

µ−ihxih. (15)

Stationarity w.r.t. xih gives

∂L
∂xih

= c′h(Qh)− r
′
h(Qh)︸            ︷︷            ︸

c̃h

+ψi(h)−µiηih +µ+
ih −µ

−
ih = 0.

If 0 < xih < x̄i then µ±ih = 0 and µi = c̃h+ψi(h)
ηih

≡ κih. If xih = 0 then µ−ih ≥ 0 and κih ≥ µi ; if

xih = x̄i then µ+
ih ≥ 0 and κih ≤ µi . Hence xih is nonincreasing in κih: the IO scheduler fills

the lowest adjusted-cost hours first, up to feasibility. If xip > 0 while some feasible o has

κio < κip and xio < x̄i , then κip ≤ µi ≤ κio, a contradiction. Summing over i yields load

shifted from high-c̃h to low-c̃h hours, conserving daily energy by Eq. (10).

Lemma A.7.2 (Elasticity ordering). In high plug-in hours,

|ϵIO
h | ≥ |ϵ

RTP
h | ≥ |ϵToU

h |.

Proof. Step 1 (IO upper-bound response). Consider a small perturbation dc̃ concentrated

in hour h. Differentiating the KKT system in Lemma A.7.1 yields a linear system in

{dxih, dµi , dµ±ih} whose solution preserves the merit order: dxih ≤ 0 at the perturbed hour

and dxiℓ ≥ 0 at some lower-κiℓ hours, with
∑
ℓ≤Ti ,ℓ∈Ai ηiℓdxiℓ = 0 (intra-day reallocation).
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Aggregating over i,

∂QIO
h

∂c̃h
≤ 0,

∣∣∣∣∂QIO
h

∂c̃h

∣∣∣∣ is maximal subject to Eq. (10).

Thus |ϵIO
h | is an upper bound among feasible reallocations.

Step 2 (RTP attenuation by risk/attention). From the household FOC Eq. (13), totally

differentiate across hours. Stacking in vector form,

Hi dxi = −
(
I + 2γiΣp Si

)
dp,

where Hi is the Hicksian substitution matrix (negative semidefinite), Σp is the covariance

matrix of prices, and Si maps p to
∑
ℓ pℓxiℓ. The matrix (I + 2γiΣpSi) is positive semidefi-

nite for γi ≥ 0; multiplying a negative semidefinite Hi by such a factor weakly shrinks the

response (Loewner order). Furthermore, ai > 0 creates inactive hours (corners), reducing

the response support. Aggregating over i preserves attenuation:

∥∥∥∥∂QRTP

∂p

∥∥∥∥ ≤ ∥∥∥∥∂QIO

∂c̃

∥∥∥∥.
Step 3 (ToU as projection). Let P be the block-averaging operator mapping hourly prices

to ToU blocks (P 2 = P , ∥P ∥2 ≤ 1). For small perturbations, dQk ≈Hk dπk with Hk negative

semidefinite. Under ToU, dπToU = P dπRTP, hence

∥dQToU∥2 = ∥HToU P dπRTP∥2 ≤ ∥HRTPdπRTP∥2,

so |∂QToU
h /∂ph| ≤ |∂QRTP

h /∂ph|. Combining Steps 1–3 yields the stated ordering.68

68We do not analyze a bill-variance ordering in our empirical set-up, but with Billk =
∑
h p

k
hX

k
h , the law of total

variance gives

Var(Billk) = E

Var

∑
h

pkhX
k
h

∣∣∣∣∣∣∣pk

+ Var

E
∑
h

pkhX
k
h

∣∣∣∣∣∣∣pk

 .

Moving from RTP to ToU replaces p by Pp, where P is a contraction (∥P ∥2 ≤ 1) and a Blackwell coarsening. Both the
within-state term and the between-state term weakly fall. Under IO (EV sub-load), consumers face a flat off-peak retail
rate; wholesale volatility is internalized by the aggregator, yielding

Var(BillRTP) ≥ Var(BillToU) ≥ Var(BillIO).
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Lemma A.7.3 (Welfare ranking with frictions). With ai ,γi > 0,

W IO ≥ W RTP ≥ W ToU ≥ W Flat.

Proof. Let W k be per-EV social welfare (net of pure transfers). IO maximizes W for the

EV sub-load given {c̃h} (Lemma A.7.1 and KKT optimality). Relative to IO,

W RTP =W IO −∆Wcoord︸   ︷︷   ︸
≥0

−E[ai]︸︷︷︸
>0

−E[γi Var(BillRTP)]︸                 ︷︷                 ︸
>0

.

ToU coarsens the signal (projection loss ∆Wgran ≥ 0) and Flat removes intertemporal in-

centives entirely. Hence the stated ordering.

Proposition A.7.1 (Emissions ordering). If eh is (weakly) lower off-peak, then relative to

baseline: IO achieves the largest emissions reduction, followed by RTP, then ToU, then Flat.

Proof. By Lemma A.7.1, IO shifts the most load into low-c̃h hours, which coincide with

low-eh by assumption; RTP and ToU shift less; Flat does not reallocate. Summing ehxih
across hours yields the ordering.

A.7.4 Overrides (“Bump Charging”): Behavior and Welfare

Override decision and probability. A household overrides in hour h iff

vih > mih +φi , (16)

where vih is the immediate utility from charging now and mih the marginal benefit from

deferring to the IO-planned hour. If Fih is the CDF of vih, the override probability is

βih = Pr
[
vih > mih +φi

]
= 1−Fih(mih +φi). (17)

Lemma A.7.4 (Override monotonicity). If Fih is nondecreasing, then βih is weakly decreasing

in φi and in mih.

Proof. Differentiate Eq. (17) (where densities exist): ∂βih/∂φi = −fih(mih + φi) ≤ 0 and

similarly for mih. Without densities, monotonicity follows from the CDF order.
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Lemma A.7.5 (Welfare effect of an override). Let h′ be the IO-planned hour and h the over-

ride hour for EV energy qih > 0. Private net benefit is vih−mih−φi > 0 when overriding. Social

cost changes by (c̃h − c̃h′ )qih; if c̃h > c̃h′ the override raises system cost.

Proof. Private part is by Eq. (16). Social part: the IO plan equalizes marginal costs across

used hours; deviating to higher-c̃h increases procurement net of rh by (c̃h − c̃h′ )qih.

Proposition A.7.2 (Aggregate override rate). If vih are i.i.d. with CDF Fv andmih ∈ {mchg,mdef}
depending on whether IO planned charging in h, and if ρ is the share of hours planned to charge,

then

β̄ = (1− ρ)
[
1−Fv(mdef + φ̄)

]
+ ρ

[
1−Fv(mchg + φ̄)

]
,

where φ̄ is the (mean) hassle cost.

Proof. Law of total probability conditioning on planned status; apply Eq. (17) in each

state and average.

Welfare with overrides and crossover. Let W IO and W RTP be per-EV welfare absent

overrides and define the baseline gap

∆W0 = W IO −W RTP. (18)

If overrides occur at rate β̄ with per-override loss λ, IO welfare becomes

W IO+O = W IO − β̄ λ. (19)

We calibrate λ by

λ̂ ≈ ppeak ·∆c̃eff · qO, λUB = (max
h
c̃h −min

h
c̃h) · qOmax, (20)

where ppeak is the probability an override lands in peak, ∆c̃eff the peak–off-peak spread

(£/kWh), and qO kWh shifted per override.

Lemma A.7.6 (IO–RTP crossover threshold). If ∆W0 > 0 and λ > 0, the override rate at

which IO with overrides equals RTP is

β̄⋆ =
∆W0

λ
. (21)
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Proof. Equate Eq. (19) to W RTP =W IO −∆W0 and solve for β̄.

Proposition A.7.3 (Welfare ordering with overrides). If β̄ < β̄⋆ , then W IO+O > W RTP; if

β̄ > β̄⋆ , RTP can dominate.

Proof. From Eq. (19) and Lemma A.7.6, the sign of W IO+O −W RTP = ∆W0 − β̄λ is deter-

mined by β̄ relative to β̄⋆ .

A.7.5 Alignment with our field experiment

The experiment (IO vs. alternatives) identifies (i) peak-to-off-peak reallocation mag-

nitudes (Lemma A.7.1); (ii) override frequencies β̄ and their timing relative to peak/off-

peak (for λ̂ via Eq. (20)); and (iii) the baseline welfare gap ∆W0 via cost/benefit ac-

counting under no overrides. These map directly into the decision rule induced by

Lemma A.7.6. Results on bill-variance are acknowledged but not tested (footnote above).

Decision rule (calibrated simulations). We simulate crossover thresholds under UK

prices (off-peak £0.07/kWh, peak £0.27/kWh; spread ∆c̃eff=£0.20/kWh). Per-override

loss uses a point estimate and bounds:

λ̂ = ppeak∆c̃effq
O with (ppeak,q

O) = (0.7,6) ⇒ λ̂ = £0.84,

λLB : (0.5,4)⇒ £0.40, λUB : (0.9,8)⇒ £1.44.

The IO–RTP crossover is β̄⋆ = ∆W0/λ.

Table 14: Crossover override rate β̄⋆ = ∆W0/λ with different levels of inattention

λ (£/override) β̄⋆ (events/EV–day)

a (£/EV–day) ∆W0 (£/EV–day) λLB λ̂ λUB β̄⋆(λLB) β̄⋆(λ̂) β̄⋆(λUB)

0.00 0.074 0.40 0.84 1.44 0.185 0.088 0.051
0.10 0.079 0.40 0.84 1.44 0.198 0.094 0.055
0.20 0.083 0.40 0.84 1.44 0.208 0.099 0.058
0.30 0.086 0.40 0.84 1.44 0.215 0.102 0.060

Columns 1–2 vary the RTP attention cost a and the implied no-override welfare gap ∆W0.
Columns 3–5 report the per-override loss calibrations: conservative lower bound λLB, point estimate λ̂,
and conservative upper bound λUB.
Columns 6–8 compute β̄⋆ = ∆W0/λ. Larger λ (more peak kWh moved per override)⇒ smaller crossover.
Values rounded.

106



Table 15: Crossover with different price elasticities and with
point-estimate λ = £0.84

Elasticity ε ∆W0 (£/EV–day) λ (£/override) β̄⋆ (events/EV–day)

−0.20 0.095 0.84 0.113
−0.50 0.083 0.84 0.099
−0.80 0.070 0.84 0.083

∆W0(ε) is locally linearized around |ε0|=0.5 with endpoints chosen to match the range
|ε| ∈ [0.2,0.8].
Higher |ε| (more RTP responsiveness) lowers ∆W0 and hence lowers the crossover β̄⋆ .

Decision rule (using the baseline row). Let β̄exp be the experimental average override

rate. Using Table 14, a=0.20 and the point estimate λ̂ imply β̄⋆ ≈ 0.099. Thus: if β̄exp <

0.058 (the λUB column), IO dominates RTP even under conservative losses; if β̄exp < 0.099,

IO dominates at the point estimate; and if β̄exp ∈ [0.099,0.208), the ranking depends on

whether the true λ is closer to the optimistic lower bound or the point estimate.

Crossover thresholds with partial AI control. The preceding analysis assumed that

the entire EV load was subject to AI scheduling. If only a fraction α of household load is

controllable (e.g. α = 0.2 so that just 20% of usage is managed by IO while the remaining

80% is on flat pricing), then the effective welfare gap shrinks to ∆W
(α)
0 = α∆W0. Because

the override loss λ is unchanged, the crossover threshold becomes

β̄⋆(α) =
∆W

(α)
0

λ
= α · ∆W0

λ
.

Thus, reducing α proportionally lowers the override cutoffs: with only 20% controllable

load, crossovers fall to one-fifth of their baseline values.

Simulation results. Figure 25 plots the implied crossover rates β̄⋆ for α = 0.2 across a

sweep of RTP elasticities (ε ∈ [0,−0.5]). Three curves show the lower-bound, midpoint,

and upper-bound calibrations of per-override loss λ. The midline (λ̂ = 0.84) implies that

with ε = −0.2, the crossover is only β̄⋆ ≈ 0.04 overrides per EV–day (i.e. roughly one

override every 25 days). When λ is large (upper bound), thresholds fall even further.

Hence, with partial AI control, IO remains dominant only if override frequencies are

kept extremely low.
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Figure 25: Crossover override thresholds

Notes: The figure plots the override crossover rate β̄⋆ = ∆W
(α)
0 /λ across a range of assumed RTP elasticities (ε ∈

[0,−0.5]) when only 20% of household load is managed by IO. Each line corresponds to a different calibration of the
per-override loss λ: a conservative lower bound, a midpoint point estimate, and a conservative upper bound. Larger
λ values shrink the crossover, meaning IO only dominates if override frequencies are very low. Note that even if RTP
users are perfectly inelastic (ε = 0), IO with extremely high override rates (e.g. 99%) cannot outperform RTP under any
of the calibrated λ values. At ε = 0, the crossover cutoff is only β̄⋆ ≈ 0.124 for the full-load case (α = 1) and β̄⋆ ≈ 0.025
for the partial-load case (α = 0.2).

Limitations. Our theoretical framework abstracts from several important considera-

tions. First, the welfare thresholds depend on calibrated parameters for attention costs

(ai), hassle costs (φi), and risk-aversion penalties (γi) that are not directly observed in

our experiment; while we draw on the literature and perform sensitivity analysis, these

inputs remain assumption-driven.

Second, we model overrides as independent events with constant per-override wel-

fare loss λ, whereas in reality override behavior and costs may vary systematically across

hours, days, and households.

Finally, our analysis is partial-equilibrium: prices {c̃h} are taken as given and house-

holds are price-takers, omitting possible feedback effects if IO Go or RTP adoption is

widespread. These simplifications are deliberate, allowing a tractable link between model

predictions and experimental data, but they should be borne in mind when interpreting

the welfare rankings.
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